Science and Technology Publishing Inc Environment and Green Technology Available online <u>www.scitecpub.com</u>

ISBN: 978-0-9886890-0-8, 11/25/2012, Page: 1-35

# Alternative Liquid Hydrocarbon Fuel Production Experimental Comparative Study for LDPE Waste and LDPE Standard Plastic

<sup>1</sup>Moinuddin Sarker\*, <sup>2</sup>Mohammad Mamunor Rashid

Natural State Research, Inc. Department of Research and Development, 37 Brown House Road (2<sup>nd</sup> floor), Stamford, CT 06902, USA Phone: 203-406-0675, Fax: 203-4069852

\*E-mail: msarker@naturalstateresearch.com

| Table of Content             | Page No. |
|------------------------------|----------|
| 1. Introduction              | 3        |
| 2. Material and Method       | 3        |
| 2.1. Materials               | 3        |
| 2.2. Pre-analysis            | 4        |
| 2.3. Process Description     | 4        |
| 3. Result and Discussion     | 6        |
| 3.1. Analytical Procedure    | 6        |
| 3.2. Pre-analysis Discussion | 7        |
| 3.3. Liquid Fuel Analysis    | 18       |
| 3.4. Solid Residue Analysis  |          |
| 4. Conclusion                |          |
| Acknowledgement              | 34       |
| References                   | 34       |

Moinuddin Sarker

## **1. Introduction**

Currently there is a large amount of waste plastics generated in the world. The consumption and production of polymers are increasing worldwide. This increasing amount of polymers wastes generates environmental problems. Utilization of these wastes is important from energetic and political aspects <sup>[1-4]</sup>. The rapid rate of plastic consumption throughout the world has led to the creation of increasing amounts of waste plastics is very small <sup>[5]</sup> and depending on the area of application, the service life of plastic products ranges from 1 to 35 years <sup>[6]</sup>. The weighted average service life of all plastics products are different in various countries based on their life style and economy. Waste plastics can be classified as industrial and municipal waste, according to their origins; these groups have different qualities and properties and are subjected to different management strategies <sup>[7]</sup>. Waste plastics represent a considerable part of municipal wastes; furthermore huge amounts of waste plastic arise as a byproduct of faulty product in industry and agriculture <sup>[8]</sup>.

There are several methods of chemical recycling are presently in use, such as direct chemical treatment involving gasification, smelting by blast furnace <sup>[9]</sup> or coke oven <sup>[10],</sup> degradation by liquefaction <sup>[11],</sup> and gasification [<sup>12]</sup>. Condensation polymers such as PETE and nylon undergo degradation to produce monomer units <sup>[13]</sup>, while from vinyl polymers such as polyolefins, a mixture containing numerous components may be obtained for use as a fuel. Catalytic cracking and reforming facilitate the selective degradation of waste plastics. The use of solid catalysts such as silica-alumina, ZSM-5, Zeolites, and mesoporous, materials has been reported for this purpose <sup>[14-17]</sup>. These materials effectively convert polyolefins into liquid fuel, giving lighter fractions as compared to thermal cracking. Thermal degradation of mixed plastics is currently receiving renewed interest as route for disposal, if the large quantities of plastic wastes collected by different collecting systems. The advantage of thermal degradation of macromolecules in the absence of air (pyrolysis) compared to combustion is a reduction in the volume of product gases by a factor of 5-20 which leads to considerable savings in the gas conditioning equipment. Furthermore, it is possible to obtain valuable hydrocarbon compounds.

The pyrolysis is complicated by the fact that plastics show poor thermal conductivity while the degradation of macromolecules requires large amounts of energy. Other studies in the literature <sup>[18-23]</sup> have investigated the degradation of polyethylene or polypropylene and polystyrene mixtures, and the results of the interactions between these polymers. William and William have analyzed the binary degradation of polystyrene and polypropylene, and it was found that the overall degradation rate of mixture was greater than the combined degradation rates of the individual components. According to the results of the products of polyethylene, polypropylene and polystyrene cracking have the most favourable properties for further energetic application. Linear paraffin content in the gas oil fraction is advantageous because this hydrocarbon structure has the highest cetane rate, but it also has the lowest octane number in the naphtha fraction. Further tests are being performed on how to generate the best quality fuel from these waste plastic. The optimal quality of fuel will represent similar characteristics and chemical properties to commercial fuels. Overall, we have seen that when mixture of waste plastics is processed through the thermal degradation process, the quality and efficiency is achieved.

Keywords: hydrocarbon, liquid fuel, waste plastic, ldpe, thermal, GC/MS, FT-IR

#### 2. Material and Method

#### 2.1. Materials

Low density polyethylene (LDPE) waste plastic collected from Stamford local city grocery store and LDPE waste plastic was shopping bags. Low density polyethylene (LDPE) waste plastic color was varieties type such as transparent, white, black etc. Collected waste plastic comes with foreign raw materials such as food particles, paper,

sand and dust etc. All foreign materials separated by manually and waste plastic washed with liquid detergent. During waste plastic washing period also generating waste water and this waste water keep into separate container for treatment purpose. This process main goal is environmental protection and reduce waste plastic problem from the environment. Waste water treatment process applied only alkali and acidic solution for coagulation and flocculation process. After retreat clean waste water can be use for waste plastic washing purpose. Wash out waste plastic dried into laboratory room temperature and cut into small pieces manually by using cutting scissor. Standard LDPE plastic collected from Sigma Aldrich Company, CAS number is 9002-88-4, lot number is MKBG7350V, Chemical structure is  $C_2H_4$  and catalog number is 428043-1kg. Standard LDPE plastic color is transparent and small pellet size.

## 2.2. Pre-analysis

Low density polyethylene (LDPE) raw waste plastic and standard LDPE raw plastic was pre-analyzed by using GC/MS, FT-IR, TGA, EA-2400 and ICP. By using GC/MS analysis was showed LDPE waste and standard plastics compound structure identification. FT-IR analysis showed LDPE waste and standard plastic functional group identification and TGA analysis result showed onset temperature which are help to liquefaction temperature determination. By EA- 2400 analysis result showed raw materials carbon, hydrogen and nitrogen percentage. Finally ICP test analysis result showed trace metal present into raw materials which are help to breakdown long chain hydrocarbon to shorter chain hydrocarbon in thermal degradation process. Above all pre-analysis results are described into pre-analysis discussion section.

## **2.3. Process Description**

Low density polyethylene (LDPE) waste plastic and LDPE standard plastic to liquid hydrocarbon fuel production purpose thermal degradation process applied. In the two types experimental process raw sample was used 1 kg of LDPE waste plastic and 1 kg of standard plastic as well. Both experiment performed same parameter and same procedure. Catalyst and vacuum system was not applied in the two experiments. Under Labconco fume hood in present of oxygen and fully close system experiment were performed. Both experiments performed into stainless steel reactor and temperature range was 25- 430 °C. Every experiment temperature was monitored watlow meter and experiment temperature was increase gradually from room temperature to 430°C. For LDPE waste and standard plastic to fuel production set up temperature determine from TGA result based on onset temperature (see **table 4**). 1<sup>st</sup> experiment was performed with LDPE standard plastic to liquid fuel and  $2^{nd}$  experiment was performed LDPE waste plastic to liquid fuel in the same procedure. 1 kg (1000gm) of standard plastic inserted into reactor chamber and reactor cover was tighten properly, then condensation unit, liquid fuel collection unit, light gas cleaning device, small pump and light gas storage device was set up properly (Seen fig.1). LDPE standard plastic started to melt from 25 °C to 430 °C, subsequently reactor temperature increased gradually. When temperature was increased gradually from 25 °C to 430 °C observed that some vapor started to come out through the condenser unit. Temperature range when 250 °C overcome, found that vapor started to condensed and ultimately turned into drop wise liquid fuel. Because the thermal degradation experimental process first able standard plastic melted, then turn into liquid slurry, then converted to vapor and vapor passed through into condenser unit and at the end liquid fuel produced and collected in the container. In this experiment without vacuum system thermal conversion process was done in presence of moisture and the moistures were not affecting conversion process. Plastic to fuel production process reaction are heterogeneous and strongly endothermic reaction. Plastic hydrocarbon chain bonds are breaking down by heat as well as carbon and moisture produce compounds which is not affecting conversion process. Polymer carbon chain and moisture are reacted each other and possible reaction are mentioned such as  $C + H_2O = CO + H_2$ , C+ CO<sub>2</sub> =2CO, C+ <sup>1</sup>/<sub>2</sub> O<sub>2</sub>= CO, C+O<sub>2</sub> =CO<sub>2</sub>, CO+H<sub>2</sub>O =CO<sub>2</sub>+H<sub>2</sub>, C+2H<sub>2</sub>= CH<sub>4</sub>, CO+ 3H<sub>2</sub>= CH<sub>4</sub>+H<sub>2</sub>O, CO<sub>2</sub>+4H<sub>2</sub> =  $CH_4$ +2H<sub>2</sub>O. Standard plastic to fuel production period some light fraction gas also generated and those gas mixtures of methane, ethane, propane and butane respectively. Produced light gas was purified by using alkali wash solution

and alkali solution normality was 0.25 (N) and the solution was sodium bicarbonate and in water solvent. Produced light gas was storage into Teflon bag by using small pump.



Figure 1: LDPE waste plastic and standard plastic to fuel production process

Liquid fuel was purified by using RCI purification technology and provided RCI filter purification system used to remove fuel sediment and water portion. From 1 kg standard plastic to liquid fuel production percentage is 80.84%, light gas production percentage is 18.95% and solid black residue percentage is 0.21%. LDPE standard plastic density is 0.78 g/ml. Solid black residue percentage is less because of experimental purposes used 99.99 % pure standard LDPE plastic for liquefaction process to liquid fuel. Standard plastic has low amount of additives content and standard plastic has additives level is parts per billion (ppb). Standard plastic to fuel production mass balance result indicates that from 1 kg of plastic conversion into liquid fuel 808.40 gm, light gas conversion into 189.5 gm and left over residue is 2.1 gm. 1000 gm standard plastic to 1040 ml liquid fuel production input electricity was 6.84 kWh and total time was consumed for whole process 4 hours and 56 minutes. On the other experiment we used waste plastic 1kg (1000gm) and same parameter and same temperature profile. LDPE Waste plastic to fuel production percentage is 80.64%, light gas production percentage is 17.91 % and left over residue percentage is 1.45%. LDPE waste plastic residue percentage is little high because LDPE waste plastic has high percentage

additives. LDPE waste plastic to fuel density is 0.79 g/ml. 1 kg of LDPE waste plastic to 1020 ml fuel production need electricity was 7.25 kWh. LDPE waste plastic to liquid fuel production electricity input was little higher than LDPE standard plastic to liquid fuel. Waste plastic to fuel production total time consumed also higher than standard plastic to fuel production because waste plastic has high amount of metal content and more additives compare with pure standard plastic. Manufacture Company is adding different type of additive for better shape of plastic use. These types of additives we are getting as a solid black residue. Both plastics to liquid fuel production comparison result **table 1** showed for visual understanding. Waste plastic to fuel production technology is patent pending technology and convert all types of waste plastic to fuel for next generation.

| Plastics<br>Name | Sample<br>Weight<br>(g.) | Liquid<br>Fuel<br>(g.) | Liquid<br>Fuel<br>(ml) | Sample as<br>Light Gas<br>(g.) | Residue<br>Weight<br>(g.) | Electricity<br>Consumption<br>kWh | Liquid<br>Fuel<br>Yield<br>% | Light<br>Gas<br>Yield<br>% | Solid<br>Residue<br>Yield % |
|------------------|--------------------------|------------------------|------------------------|--------------------------------|---------------------------|-----------------------------------|------------------------------|----------------------------|-----------------------------|
| Standard         | 1000                     | 808.40                 | 1040                   | 189.5                          | 2.1                       | 6.84                              | 80.84                        | 18.95                      | 0.21                        |
| LDPE             |                          |                        |                        |                                |                           |                                   |                              |                            |                             |
| LDPE             | 1000                     | 806.4                  | 1020                   | 179.1                          | 14.5                      | 7.25                              | 80.64                        | 17.91                      | 1.45                        |
| Waste            |                          |                        |                        |                                |                           |                                   |                              |                            |                             |
| Plastic          |                          |                        |                        |                                |                           |                                   |                              |                            |                             |

Table 1: LDPE waste plastic and standard plastic to fuel production percentage data

## 3. Result and Discussion

#### **3.1. Analytical Procedure**

Perkin Elmer TGA pyris-1 was used for raw materials onset and inflection temperature measuring. Helium gas was use for purge and temperature range was used 50-800 °C. Temperature increased range was 20°C/ minute. From this analysis we calculated how much percentage conversion rate from plastic to fuel by using thermal degradation process. TGA analysis gives us liquefaction temperature for plastic and leftover residue percentage. Perkin Elmer FT-IR spectrum 100 was used for two type of sample analysis. 1<sup>st</sup> pre-analysis of solid raw LDPE standard and LDPE waste plastic and secondly was used for liquid fuel from LDPE standard and waste plastic. Solid sample analysis purpose use ATR system and liquid sample analysis purpose was used NaCl cell system. For liquid sample analysis scan number was 32, resolution was 4 cm<sup>-1</sup> and wave range was 4000-400 cm<sup>-1</sup>. By using FT-IR analysis was giving us wave functional group bend energy which is resemble to calorific value. By using GC/MS analysis was solid hard standard and waste plastic also both liquid fuels. Sold sample was analysis by using pyroprobe and temperature was 1200 °C to sample make volatile for GC column. When liquid fuel was analysis by using GC/MS that time was used auto sample system. Solid and liquid sample analysis purpose was same GC/MS column. Carrier gas was use for sample carrier helium. GC/MS program set up for liquid fuel analysis initial temperature 40 °C and hold for 1 minute, final temperature 325 °C and temperature ramping rate 10 °C per minute. Final temperature hold 15 minutes, equilibration time 0.5 minute and total experiment run time 45.50 minutes. Carrier gas used Helium and Perkin Elmer Elite 5MS capillary column used for GC. Column length 30 m, ID 0.25 mm and DF 0.5 um. Column temperature range was - 60 to 350 °C. MS method set up for mass scan Ion mode EI +, data format Centroid, start mass 35.00, end mass 528, scan time 0.25 sec and inter scan time 0.15 sec. Perkin Elmer EA -2400 used for raw waste plastics CHN percentage analysis. Finally ICP (Induced Couple Plasma) was used for trace metal analysis from raw materials and solid residue.

#### 3.2. Pre-analysis Discussion

| Test Method | Trace Metal | Raw LDPE Waste Plastic | <b>Raw LDPE Standard Plastic</b> |
|-------------|-------------|------------------------|----------------------------------|
| Name        | Name        | (ppm)                  | (ppb)                            |
| ASTM D1976  | Silver      | <1.0                   | <1.0                             |
|             | Aluminum    | 197.4                  | 99.7                             |
|             | Boron       | 2.8                    | 47.1                             |
|             | Barium      | <1.0                   | 42.6                             |
|             | Calcium     | 962.6                  | 738.8                            |
|             | Chromium    | <1.0                   | 23.7                             |
|             | Copper      | <1.0                   | 2.2                              |
|             | Iron        | 6.0                    | <1.0                             |
|             | Potassium   | 35.4                   | <50.0                            |
|             | Lithium     | <1.0                   | <1.0                             |
|             | Magnesium   | 25.1                   | <1.0                             |
|             | Molybdenum  | <1.0                   | <1.0                             |
|             | Sodium      | 45.2                   | 10181.0                          |
|             | Nickel      | <1.0                   | 4.3                              |
|             | Phosphorus  | 26.7                   | <1.0                             |
|             | Lead        | <1.0                   | <1.0                             |
|             | Antimony    | <1.0                   | 2.5                              |
|             | Silicon     | 90.2                   | <1.0                             |
|             | Tin         | <1.0                   | <1.0                             |
|             | Strontium   |                        | 2.7                              |
|             | Titanium    | 2.7                    | <1.0                             |
|             | Thallium    |                        | <1.0                             |
|             | Vanadium    | <1.0                   | <1.0                             |
|             | Zinc        | 2.6                    | 21.3                             |

Table 2: LDPE waste and standard plastic analysis by ICP

American Standard and Testing Method (ASTM D1976) analysis was performed by ICP (Induced Couple Plasma) of raw waste LDPE plastic numerous metal contents are found in the analysis (table 2). We noticed that LDPE waste and standard plastic some metal content are very high compare to less contents metal in the residue. In raw waste LDPE plastic metal contents are measured in ppm that's Parts per Million and for raw standard LDPE plastic metal contents are measured in ppb that is Parts per Billion. Because of standard plastics is much more pure than waste plastics. LDPE waste plastic has high and low contents metal elements such as Silver <1.0 ppm, Aluminium 197.4 ppm, Boron 2.8 ppm, Barium <1.0 ppm, Calcium 962.6 ppm, Chromium <1.0 ppm, Copper <1.0 ppm, Iron 6.0 ppm, Potassium 35.4 ppm, Lithium <1.0 ppm, Magnesium 25.1 ppm, Molybdenum <1.0 ppm, Sodium 45.2 ppm, Nickel <1.0 ppm, Phosphorus 26.7 ppm, Lead <1.0 ppm, Antimony <1.0 ppm, Silicon 90.2 ppm, Tin <1.0 ppm, Strontium 0 ppm, Titanium 2.7 ppm, Thallium 0 ppm, Vanadium <1.0 ppm and Zinc 2.6 ppm etc. On the other hand Standard Raw LDPE plastic same metal contents are appeared in the analysis but metal quantity contents are making differ of each other. In some case found same quantity but in some case quantity varies on metal to metal including less content and high content. In the analysis of standard LDPE plastic metal quantity contents are found comparative with raw standard LDPE plastic metal contents are following such as Silver <1.0 ppb, Aluminium 99.7 ppb, Boron 47.1 ppb, Barium 42.6 ppb, Calcium 738.8 ppb, Chromium 23.7 ppb, Copper 2.2 ppb, Iron <1.0 ppb, Potassium <50.0 ppb, Lithium <1.0 ppb, Magnesium <1.0 ppb, Molybdenum <1.0 ppb, Sodium 10181.0 ppb, Nickel 4.3 ppb, Phosphorus <1.0 ppb, Lead <1.0 ppb, Antimony 2.5 ppb, Silicon <1.0 ppb, Tin <1.0 ppb, Strontium 2.7 ppb, Titanium <1.0 ppb, Thallium <1.0 ppb, Vanadium <1.0 ppb and Zinc 21.3 ppb etc. In some parameter found that raw standard LDPE plastic and raw waste LDPE plastic metal quantity contents are similar. On the other hand in raw Standard LDPE plastic same metal contents are appeared in the analysis but metal quantity contents are making differ of each other. In some case found same quantity but in some case quantity varies on metal to metal including less content and high content as well. LDPE waste plastic metal content more than standard plastic because when manufacturing company making plastic for consumer that times manufacture company adding extra additives for plastic good shape such as hardness, softness and thickness. Also raw LDPE waste plastics are abandoning in the open nature for long run as well as contaminated with different types of metal as appeared in the analysis.

| Test Method Name | Plastics Name                 | Carbon (C) % | Hydrogen (H) % | Nitrogen (N)% |
|------------------|-------------------------------|--------------|----------------|---------------|
| ASTM D5291_a     | Raw LDPE Waste<br>Plastics    | 85.33        | 14.31          | < 0.30        |
|                  | Raw LDPE Standard<br>Plastics | 86.00        | 13.68          | < 0.30        |

Table 3: LDPE waste and standard plastic C, H and N percentage by EA-2400

ASTM D5291\_a, (American Standard and Testing Method) analysis (table 3) was performed of raw waste LDPE plastic and raw standard LDPE plastic analysis by Elemental Analyzer 2400 (EA-2400) following percentage of Carbon, Hydrogen and Nitrogen contents are appeared. In the analysis of both raw waste and raw standard plastics such as in raw waste LDPE Carbon 85.33%, Hydrogen 14.31% and ultimately Nitrogen % <0.30% as well .On the other hand raw LDPE standard plastics Carbon 86.00%, Hydrogen 13.68% and ultimately Nitrogen <0.30% respectively. In the comparative analysis of carbon, hydrogen and nitrogen contents found that raw standard LDPE plastic has more carbon and hydrogen percentage content than raw waste LDPE plastic and Nitrogen contents are same percentage <0.30% in the both residue as well. Fundamentally raw Standard LDPE plastic is more pure than waste LDPE plastic and waste LDPE plastic are exists in the nature for long run as well as contaminated with metal and other substances. Also during manufacturing different type's additives and dyes are added into the waste LDPE plastics in order to give durable shape and color of waste plastics. Therefore in raw standard LDPE much more pure then raw waste LDPE plastic as aspect of carbon and hydrogen percentage contents.

**Table 4:** TGA analysis result of LDPE waste plastic and standard LDPE plastic

| Sample Name           | Sample weight (g.) | Onset temperature (°C) | Inflection point temperature (°C) |
|-----------------------|--------------------|------------------------|-----------------------------------|
| LDPE waste plastic    | 3.13               | 421.53                 | 457.11                            |
| LDPE standard plastic | 2.72               | 434.11                 | 466.57                            |

LDPE waste plastic and LDPE standard plastic was per analysis by using Thermogravimetric analyzer (TGA Pyris-1) for raw sample (**Table 4**) onset temperature measured. TGA analysis purposed helium gas was use as carrier gas and temperature profile was use 50 °C to 800 °C and temperature ramping rate was use 20 °C per minutes. In table 4 analysis result showed LDPE waste plastic onset temperature was 421.53 °C and LDPE standard plastic onset temperature was 434.11 °C from TGA analysis. By using this equipment raw samples onset temperature determined and this temperature was help to setup liquefaction process because before start liquefaction process waste plastic to fuel need to know first temperature profile.

Table 5: FT-IR spectrum of LDPE waste plastic functional group name

| Number of | Band Number         | Functional | Number of | Band Number         | Functional |
|-----------|---------------------|------------|-----------|---------------------|------------|
| Peak      | (cm <sup>-1</sup> ) | Group Name | Peak      | (cm <sup>-1</sup> ) | Group Name |
| 1         | 2916.01             | $CH_2$     | 5         | 1377.72             | $CH_3$     |

## 

Moinuddin Sarker



Figure 2: FT-IR spectrum of LDPE waste plastic

2

3

4

100.0

Perkin Elmer FT-IR analysis of LDPE raw waste plastic (**fig.2 and table 5**) according to their wave number and spectrum band following types of functional groups are appeared in the analysis. In the spectrum field we noticed that higher wave number are emerged in the initial phase and middle index of the spectrum and in higher wave number small and bulky both functional groups are available and in low wave number double bond and single bond functional groups are available such as methane group, cis and trans alkene etc. Hereafter wave number 2916.01 cm<sup>-1</sup>, functional group is CH<sub>2</sub>, 2848.31 cm<sup>-1</sup> functional group is C-CH<sub>3</sub> wave number 1645.62 cm<sup>-1</sup>, functional group is Non-Conjugated, wave number 1462.89 cm<sup>-1</sup> and 1377.72 cm<sup>-1</sup> functional group is CH<sub>3</sub>, and ultimately wave number 729.84 cm<sup>-1</sup> and 719.08 functional group is -CH=CH-(cis) as well. Energy values are calculated, using formula is E=hv, Where h=Planks Constant, h =6.626x10<sup>-34</sup> J, v= Frequency in Hertz (sec<sup>-1</sup>), Where v=c/ $\lambda$ , c=Speed of light, where, c=3x10<sup>10</sup> m/s, W=1/ $\lambda$ , where  $\lambda$  is wave length and W is wave number in cm<sup>-1</sup>. Therefore the equation E=hv, can substitute by the following equation, E=hcW. According to their wave number several energy values are calculated such as for 2916.01 (cm<sup>-1</sup>) calculated energy, E=5.79x10<sup>-20</sup> J, wave number 2848.31 (cm<sup>-1</sup>), calculated energy, E=3.26x10<sup>-20</sup> J, wave number 1645.62 (cm<sup>-1</sup>), calculated ener

9

1462.89 (cm<sup>-1</sup>), calculated energy,  $E=2.90 \times 10^{-20}$  J, wave number 1377.72 (cm<sup>-1</sup>), calculated energy,  $E=2.73 \times 10^{-20}$  J, wave number 729.84 (cm<sup>-1</sup>), calculated energy,  $E=1.44 \times 10^{-20}$  J, Similarly, wave number 719.08 (cm<sup>-1</sup>) energy,  $E=1.42 \times 10^{-20}$  J respectively.



Figure 3: FT-IR spectrum of LDPE standard plastic

| Table 6: FT-IR spectrum | of LDPE standard p | lastic functional | group name |
|-------------------------|--------------------|-------------------|------------|
|-------------------------|--------------------|-------------------|------------|

| Number of<br>Peak | Band Number<br>(cm <sup>-1</sup> ) | Functional<br>Group Name | Number of<br>Peak | Band Number<br>(cm <sup>-1</sup> ) | Functional<br>Group Name |
|-------------------|------------------------------------|--------------------------|-------------------|------------------------------------|--------------------------|
| 1                 | 2915.53                            | $CH_2$                   | 4                 | 1377.28                            | CH <sub>3</sub>          |
| 2                 | 2849.03                            | $CH_2$                   | 5                 | 717.51                             | -CH=CH-(cis)             |
| 3                 | 1470.61                            | CH <sub>3</sub>          |                   |                                    |                          |

From FT-IR analysis of LDPE raw standard plastic (**fig.3 and table 6**) according to their wave number and spectrum band following types of functional groups are appeared in the analysis. In the spectrum field we noticed that higher wave number are emerged in the initial phase and middle index of the spectrum and in higher wave number small and bulky both functional groups are available and in low wave number double bond and single bond functional groups are available such as methane group, cis and trans alkene etc. Hereafter wave number 2915.53 cm<sup>-1</sup>,

functional group is CH<sub>2</sub>, 2849.03 cm<sup>-1</sup> functional group is C-CH<sub>3</sub>, wave number 1470.61 cm<sup>-1</sup>, functional group is CH<sub>3</sub>, wave number 1377.28 cm<sup>-1</sup> functional group is CH<sub>3</sub>, and ultimately wave number 717.51 cm<sup>-1</sup> functional group is -CH=CH-(cis) as well. Energy values are calculated, using formula is E=hv, Where h=Planks Constant, h =6.626x10<sup>-34</sup> J, v= Frequency in Hertz (sec<sup>-1</sup>), Where v=c/ $\lambda$ , c=Speed of light, where, c=3x10<sup>10</sup> m/s, W=1/ $\lambda$ , where  $\lambda$  is wave length and W is wave number in cm<sup>-1</sup>. Therefore the equation E=hv, can substitute by the following equation, E=hcW. According to their wave number several energy values are calculated such as for 2915.53 (cm<sup>-1</sup>) calculated energy, E=5.79x10<sup>-20</sup> J, wave number 2848.03 (cm<sup>-1</sup>), calculated energy, E=5.65x10<sup>-20</sup> J, wave number 1470.61 (cm<sup>-1</sup>), calculated energy, E=2.92x10<sup>-20</sup> J, wave number 1377.28 (cm<sup>-1</sup>), calculated energy, E=2.73x10<sup>-20</sup> J and Similarly, wave number 717.51 (cm<sup>-1</sup>) energy, E=1.42x10<sup>-20</sup> J respectively.



Figure 4: GC/MS chromatogram of LDPE waste plastic

Table 7: LDPE waste plastic GC/MS chromatogram compound list

| Peak   | Retention    | Trace | Compound                  | Compound                       | Molecular | Probability | NIST    |
|--------|--------------|-------|---------------------------|--------------------------------|-----------|-------------|---------|
| Number | Time         | Mass  | Name                      | Formula                        | Weight    | %           | Library |
|        | ( <b>M</b> ) | (m/z) |                           |                                |           |             | Number  |
| 1      | 2.18         | 41    | Cyclopropane              | C3H6                           | 42        | 40.3        | 18854   |
| 2      | 2.25         | 41    | 2-Butene, (E)-            | C <sub>4</sub> H <sub>8</sub>  | 56        | 16.3        | 105     |
| 3      | 2.44         | 42    | Cyclopropane, ethyl-      | C5H10                          | 70        | 39.4        | 114410  |
| 4      | 2.58         | 67    | 1,4-Pentadiene            | C5H8                           | 68        | 24.6        | 114494  |
| 5      | 2.63         | 66    | Cyclopropane, ethylidene- | C5H8                           | 68        | 10.2        | 152269  |
| 6      | 2.73         | 67    | Cyclopentene              | C <sub>5</sub> H <sub>8</sub>  | 68        | 22.3        | 19032   |
| 7      | 2.86         | 67    | 1,5-Hexadiene             | C <sub>6</sub> H <sub>10</sub> | 82        | 30.3        | 227588  |
| 8      | 2.94         | 41    | Cyclopropane, propyl-     | C <sub>6</sub> H <sub>12</sub> | 84        | 26.3        | 60624   |

Copyright © 2012 www.scitecpub.com

| 9  | 3.54  | 67 | Cyclopentene, 3-methyl-                            | C <sub>6</sub> H <sub>10</sub>    | 82  | 13.6  | 114408 |
|----|-------|----|----------------------------------------------------|-----------------------------------|-----|-------|--------|
| 10 | 3.68  | 78 | Benzene                                            | C <sub>6</sub> H <sub>6</sub>     | 78  | 73.5  | 114388 |
| 11 | 3.77  | 79 | Cyclopentene,3-<br>methylene-                      | C <sub>6</sub> H <sub>8</sub>     | 80  | 19.9  | 151094 |
| 12 | 3.93  | 67 | Cyclohexene                                        | C6H10                             | 82  | 19.0  | 114431 |
| 13 | 4.07  | 41 | 1-Heptene                                          | C7H14                             | 98  | 16.6  | 19704  |
| 14 | 4.20  | 43 | Heptane                                            | C7H16                             | 100 | 46.3  | 61276  |
| 15 | 4.68  | 83 | Cyclohexane, methyl-                               | C7H14                             | 98  | 36.1  | 118503 |
| 16 | 4.99  | 81 | 1,4-Hexadiene, 4-methyl-                           | C7H12                             | 96  | 7.35  | 113135 |
| 17 | 5.13  | 55 | 1-Octyn-3-ol                                       | C8H14O                            | 126 | 8.34  | 113255 |
| 18 | 5.28  | 67 | 1,3-Pentadiene, 2,4-<br>dimethyl-                  | C7H12                             | 96  | 13.4  | 114450 |
| 19 | 5.44  | 79 | Cyclopentanepropanol, 2-<br>methylene-             | C9H16O                            | 140 | 19.2  | 160878 |
| 20 | 5.52  | 91 | Cyclobutene, 2-<br>propenylidene-                  | С7Н8                              | 92  | 18.0  | 29595  |
| 21 | 5.62  | 81 | Cyclopentene, 4,4-<br>dimethyl-                    | C7H12                             | 96  | 8.49  | 38642  |
| 22 | 5.75  | 82 | 3,4-Nonadiene                                      | C9H16                             | 124 | 8.23  | 54088  |
| 23 | 5.87  | 67 | 1,4-Octadiene                                      | C8H14                             | 110 | 30.5  | 113431 |
| 24 | 6.09  | 41 | 1-Octene                                           | C8H16                             | 112 | 11.0  | 191147 |
| 25 | 6.31  | 43 | Hexane, 3-ethyl-                                   | C8H18                             | 114 | 21.06 | 113940 |
| 26 | 6.51  | 67 | Bicyclo[5.1.0]octane                               | C8H14                             | 110 | 9.46  | 149566 |
| 27 | 6.65  | 55 | 2-Octene                                           | C8H16                             | 112 | 11.1  | 118191 |
| 28 | 6.96  | 67 | 1,4-Octadiene                                      | C8H14                             | 110 | 24.5  | 113431 |
| 29 | 7.17  | 41 | 1,9-Nonanediol                                     | C9H20O2                           | 160 | 11.0  | 114694 |
| 30 | 7.93  | 91 | Cyclohexanol, 1-ethynyl-, carbamate                | C9H13NO2                          | 167 | 26.0  | 246016 |
| 31 | 8.44  | 55 | Cyclohexane,<br>cyclopropyl-                       | C9H16                             | 124 | 20.9  | 26670  |
| 32 | 8.53  | 55 | 1,8-Nonadiene                                      | C9H16                             | 124 | 29.8  | 107523 |
| 33 | 8.81  | 55 | 1-Nonene                                           | C9H18                             | 126 | 10.3  | 142583 |
| 34 | 9.05  | 43 | Nonane                                             | C9H20                             | 128 | 16.5  | 2665   |
| 35 | 9.37  | 83 | Cyclopentane, 1-methyl-<br>2-(2-propenyl)-, trans- | C9H16                             | 124 | 43.0  | 26931  |
| 36 | 10.41 | 67 | Cyclopentene, 1-(3-<br>methylbutyl)-               | C <sub>10</sub> H <sub>18</sub>   | 138 | 10.7  | 61018  |
| 37 | 10.54 | 56 | 5-Dodecene, (E)-                                   | C <sub>12</sub> H <sub>24</sub>   | 168 | 4.86  | 61866  |
| 38 | 11.13 | 56 | Nonane, 5-methylene-                               | C <sub>10</sub> H <sub>20</sub>   | 140 | 29.4  | 61927  |
| 39 | 11.47 | 41 | 1,9-Decadiene                                      | C <sub>10</sub> H <sub>18</sub>   | 138 | 32.2  | 118291 |
| 40 | 11.77 | 55 | 1-Decene                                           | C <sub>10</sub> H <sub>20</sub>   | 140 | 5.50  | 118883 |
| 41 | 11.99 | 57 | Decane                                             | C <sub>10</sub> H <sub>22</sub>   | 142 | 27.0  | 114147 |
| 42 | 12.47 | 55 | Cyclohexane, 1-methyl-2-<br>propyl-                | C <sub>10</sub> H <sub>20</sub>   | 140 | 30.4  | 114020 |
| 43 | 12.72 | 55 | 1,11-Dodecadiene                                   | C <sub>12</sub> H <sub>22</sub>   | 166 | 11.0  | 113595 |
| 44 | 13.95 | 56 | Cyclobutane, 1-hexyl-2,3-<br>dimethyl-             | C <sub>12</sub> H <sub>24</sub>   | 168 | 4.65  | 60877  |
| 45 | 14.38 | 41 | 1,10-Undecadiene                                   | C <sub>11</sub> H <sub>20</sub>   | 152 | 24.1  | 113574 |
| 46 | 14.66 | 41 | 1-Undecanol                                        | C <sub>11</sub> H <sub>24</sub> O | 172 | 5.78  | 114087 |
| 47 | 14.88 | 57 | Undecane                                           | C <sub>11</sub> H <sub>24</sub>   | 156 | 28.1  | 249213 |

| 4917.15411,11-Dodecadiene $C_{12}H_{22}$ 16613.45017.40411-Tridecanol $C_{13}H_{28}O$ 2004.515117.6157Dodecane $C_{12}H_{26}$ 17015.75217.95556-Dodecene, (Z)- $C_{12}H_{24}$ 1685.275319.77411,11-Dodecadiene $C_{12}H_{22}$ 1668.035420.00551-Tridecanol $C_{13}H_{28}O$ 2008.105520.1957Tridecane $C_{12}H_{22}$ 18428.7                                                      | 113595<br>114368<br>291499<br>142611<br>113595<br>114368<br>107767<br>113609<br>113612<br>61052<br>113925 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| $50$ $17.40$ $41$ $1$ -Tridecanol $C_{13}H_{28}O$ $200$ $4.51$ $51$ $17.61$ $57$ Dodecane $C_{12}H_{26}$ $170$ $15.7$ $52$ $17.95$ $55$ $6$ -Dodecene, (Z)- $C_{12}H_{24}$ $168$ $5.27$ $53$ $19.77$ $41$ $1,11$ -Dodecadiene $C_{12}H_{22}$ $166$ $8.03$ $54$ $20.00$ $55$ $1$ -Tridecanol $C_{13}H_{28}O$ $200$ $8.10$ $55$ $20.19$ $57$ Tridecane $C_{12}H_{22}$ $184$ $28.7$ | 114368<br>291499<br>142611<br>113595<br>114368<br>107767<br>113609<br>113612<br>61052<br>113925           |
| 51 $17.61$ 57Dodecane $C_{12}H_{26}$ $170$ $15.7$ 52 $17.95$ 55 $6$ -Dodecene, (Z)- $C_{12}H_{24}$ $168$ $5.27$ 53 $19.77$ $41$ $1,11$ -Dodecadiene $C_{12}H_{22}$ $166$ $8.03$ 54 $20.00$ 55 $1$ -Tridecanol $C_{13}H_{28}O$ $200$ $8.10$ 55 $20.19$ $57$ Tridecane $C_{12}H_{20}$ $184$ $28.7$                                                                                 | 291499<br>142611<br>113595<br>114368<br>107767<br>113609<br>113612<br>61052<br>113925                     |
| 52 $17.95$ 556-Dodecene, (Z)- $C_{12}H_{24}$ 1685.275319.77411,11-Dodecadiene $C_{12}H_{22}$ 1668.035420.00551-Tridecanol $C_{13}H_{28}O$ 2008.105520.1957Tridecane $C_{12}H_{22}$ 18428.7                                                                                                                                                                                       | 142611<br>113595<br>114368<br>107767<br>113609<br>113612<br>61052<br>113925                               |
| 5319.77411,11-Dodecadiene $C_{12}H_{22}$ 1668.035420.00551-Tridecanol $C_{13}H_{28}O$ 2008.105520.1957Tridecane $C_{12}H_{20}$ 18428.7                                                                                                                                                                                                                                           | 113595<br>114368<br>107767<br>113609<br>113612<br>61052<br>113925                                         |
| 54     20.00     55     1-Tridecanol     C13H28O     200     8.10       55     20.19     57     Tridecane     C12H20     184     28.7                                                                                                                                                                                                                                            | 114368<br>107767<br>113609<br>113612<br>61052<br>113925                                                   |
| 55 20.19 57 Tridecane CraHao 184 29.7                                                                                                                                                                                                                                                                                                                                            | 107767<br>113609<br>113612<br>61052<br>113925                                                             |
| -55 - 20.17 - 57 - 1100000 - 0131128 - 104 - 20.7                                                                                                                                                                                                                                                                                                                                | 113609<br>113612<br>61052<br>113925                                                                       |
| 56 21.76 56 2-Butyl-1-decene C <sub>14</sub> H <sub>28</sub> 196 24.3                                                                                                                                                                                                                                                                                                            | 113612<br>61052<br>113925                                                                                 |
| 57 22.23 55 1,13-Tetradecadiene C <sub>14</sub> H <sub>26</sub> 194 12.7                                                                                                                                                                                                                                                                                                         | 61052<br>113925                                                                                           |
| 58 22.45 41 Cyclotetradecane C <sub>14</sub> H <sub>28</sub> 196 4.46                                                                                                                                                                                                                                                                                                            | 113925                                                                                                    |
| 59         22.62         57         Tetradecane         C14H30         198         31.3                                                                                                                                                                                                                                                                                          |                                                                                                           |
| 60 24.56 55 1,13-Tetradecadiene C <sub>14</sub> H <sub>26</sub> 194 18.1                                                                                                                                                                                                                                                                                                         | 113612                                                                                                    |
| 61 24.75 55 Cyclopentadecane C <sub>15</sub> H <sub>30</sub> 210 6.52                                                                                                                                                                                                                                                                                                            | 114876                                                                                                    |
| 62 24.91 43 Pentadecane C <sub>15</sub> H <sub>32</sub> 212 22.3                                                                                                                                                                                                                                                                                                                 | 22620                                                                                                     |
| 63 26.76 55 11-Hexadecen-1-ol, (Z)- C <sub>16</sub> H <sub>32</sub> O 240 7.82                                                                                                                                                                                                                                                                                                   | 108369                                                                                                    |
| 64 26.93 41 1-Hexadecanol C <sub>16</sub> H <sub>34</sub> O 242 6.55                                                                                                                                                                                                                                                                                                             | 114116                                                                                                    |
| 65 27.07 57 Nonadecane C <sub>19</sub> H <sub>40</sub> 268 25.4                                                                                                                                                                                                                                                                                                                  | 114098                                                                                                    |
| 66 27.39 55 1-Hexadecene C <sub>16</sub> H <sub>32</sub> 224 5.03                                                                                                                                                                                                                                                                                                                | 118882                                                                                                    |
| 67 28.84 55 11-Hexadecen-1-ol, (Z)- C <sub>16</sub> H <sub>32</sub> O 240 8.92                                                                                                                                                                                                                                                                                                   | 108369                                                                                                    |
| 68         30.96         83         1-Docosene         C <sub>22</sub> H <sub>44</sub> 308         6.54                                                                                                                                                                                                                                                                          | 113878                                                                                                    |
| 6931.0757NonadecaneC19H4026817.7                                                                                                                                                                                                                                                                                                                                                 | 114098                                                                                                    |
| 70         32.69         82         11-Hexadecen-1-ol, (Z)-         C <sub>16</sub> H <sub>32</sub> O         240         11.1                                                                                                                                                                                                                                                   | 108369                                                                                                    |
| 71         32.83         83         1-Nonadecene         C19H38         266         8.38                                                                                                                                                                                                                                                                                         | 113626                                                                                                    |
| 72         32.93         57         Nonadecane         C19H40         268         29.8                                                                                                                                                                                                                                                                                           | 114098                                                                                                    |
| 7334.48551,19-EicosadieneC20H382788.98                                                                                                                                                                                                                                                                                                                                           | 241604                                                                                                    |
| 74 34.60 83 1-Docosene C <sub>22</sub> H <sub>44</sub> 308 8.82                                                                                                                                                                                                                                                                                                                  | 113878                                                                                                    |
| 75 34.70 71 Nonadecane C <sub>19</sub> H <sub>40</sub> 268 21.8                                                                                                                                                                                                                                                                                                                  | 114098                                                                                                    |
| 76 36.19 55 1,19-Eicosadiene C <sub>20</sub> H <sub>38</sub> 278 10.2                                                                                                                                                                                                                                                                                                            | 241604                                                                                                    |
| 77 36.31 83 1-Docosene C <sub>22</sub> H <sub>44</sub> 308 10.2                                                                                                                                                                                                                                                                                                                  | 113878                                                                                                    |
| 78         36.39         57         Nonadecane         C19H40         268         8.38                                                                                                                                                                                                                                                                                           | 114098                                                                                                    |
| 79 37.83 55 1,15-Pentadecanediol $C_{15}H_{32}O_2$ 244 10.8                                                                                                                                                                                                                                                                                                                      | 113063                                                                                                    |
| 80 37.94 97 1-Eicosanol C <sub>20</sub> H <sub>42</sub> O 298 10.7                                                                                                                                                                                                                                                                                                               | 113075                                                                                                    |
| 81 38.02 71 Heneicosane C <sub>21</sub> H <sub>44</sub> 296 7.46                                                                                                                                                                                                                                                                                                                 | 107569                                                                                                    |
| 82 39.40 55 1,15-Pentadecanediol $C_{15}H_{32}O_2$ 244 11.5                                                                                                                                                                                                                                                                                                                      | 113063                                                                                                    |
| 83 39.50 83 1-Eicosanol C <sub>20</sub> H <sub>42</sub> O 298 9.71                                                                                                                                                                                                                                                                                                               | 113075                                                                                                    |
| 84 39.56 57 Nonadecane C <sub>19</sub> H <sub>40</sub> 268 7.47                                                                                                                                                                                                                                                                                                                  | 114098                                                                                                    |
| 85 40.92 82 1,19-Eicosadiene C <sub>20</sub> H <sub>38</sub> 278 9.30                                                                                                                                                                                                                                                                                                            | 241604                                                                                                    |
| 86 41.00 83 1-Eicosanol C <sub>20</sub> H <sub>42</sub> O 298 12.6                                                                                                                                                                                                                                                                                                               | 113075                                                                                                    |
| 87 41.07 57 Tetracosane $C_{24}H_{50}$ 338 11.0                                                                                                                                                                                                                                                                                                                                  | 248196                                                                                                    |
| 88 42.44 55 9-Tricosene, (Z)- C <sub>23</sub> H <sub>46</sub> 322 7.69                                                                                                                                                                                                                                                                                                           | 70967                                                                                                     |
| 89         42.51         57         Octacosane         C <sub>28</sub> H <sub>58</sub> 394         10.5                                                                                                                                                                                                                                                                          | 149865                                                                                                    |
| 90 43.77 82 1,19-Eicosadiene C <sub>20</sub> H <sub>38</sub> 278 8.90                                                                                                                                                                                                                                                                                                            | 241604                                                                                                    |
| 91 45.21 97 1-Eicosanol C <sub>20</sub> H <sub>42</sub> O 298 13.1                                                                                                                                                                                                                                                                                                               | 113075                                                                                                    |
| 92 46.72 83 1-Eicosanol C <sub>20</sub> H <sub>42</sub> O 298 11.4                                                                                                                                                                                                                                                                                                               | 113075                                                                                                    |
| 93 48.34 83 1-Eicosanol C <sub>20</sub> H <sub>42</sub> O 298 13.5                                                                                                                                                                                                                                                                                                               | 113075                                                                                                    |

From GC-MS pyroprobe analysis of raw LDPE waste plastics inside of pyroprobe raw solid waste plastics turns into volatile gas with high temperature at 1200 °C and that volatile gas passed through the column to gas chromatography, helium (He) is used as a carrier gas and then sends the volatile gas to the mass spectroscopy and in mass compounds are detected according to the boiling point of individual compound and among those only several compounds are introduced as well elaborated in the analysis (fig.4 and table7). In accordance with the retention time and trace masses numerous different types of hydrocarbon compound and benzene derivatives compounds are appeared in the analysis result index. Many compounds are emerged on the analysis carbon range  $C_3$  to  $C_{28}$ . In the initial state of the analysis index according to the retention time such as retention time 2.18 and trace mass 41, compound is single bond Cyclopropane ( $C_3H_6$ ), retention time 2.25 and trace mass 41 compound is double bond 2-Butene,(E)- ( $C_4H_8$ ), retention time 2.44 and trace mass 42, compound is single bond Cyclopropane,ethyl-( $C_5H_{10}$ ), retention time 2.58 and trace mass 67, compound is 1-4 Pentadiene ( $C_5H_8$ ), retention time 2.94 and trace mass 41, compound is Cyclopropane, Propyl ( $C_6H_{12}$ ), retention time 3.54 and trace mass 67, compound is double bond Cyclopentene, 3-methyl- ( $C_6H_{10}$ ), retention time 3.93 and trace mass 67, compound is Cyclohexane ( $C_6H_{10}$ ), retention time 4.07 and trace mass 41, compound name is 1-Heptene ( $C_7H_{14}$ ), retention time 4.20 and trace mass 43, compound is Heptane ( $C_7H_6$ ), retention time 4.68 and trace mass 83, compound is Cyclohexane, methyl- ( $C_7H_{14}$ ), retention time 4.99 and trace mass 81, compound is 1,4-Hexadiene, 4-methyl- ( $C_7H_{12}$ ), retention time 5.28 and trace mass 67, compound is 1,3-Pentadiene, 2,4-dimethyl- ( $C_7H_{12}$ ), retention time 5.87 and trace mass 67, compound is double bond 1,4-Octadiene ( $C_8H_{14}$ ), retention time 6.65 and trace mass 55, compound is double bonding 2-Octene (  $C_8H_{16}$ , retention time 7.93 and trace mass 91, compound is Cyclohexanol, 1-ethynyl-, carbamate (C9H13NO2) here appearing that oxygen compound are produced because in the reactor during reaction phase oxygen induce from moisture, retention time 8.81 and trace mass 55, compound is 1-Nonene ( $C_9H_{18}$ ), retention time 9.37 and trace mass 83, compound is Cyclopentane, 1-methyl-2-(2-propenyl)-, trans- (C<sub>9</sub>H<sub>16</sub>), retention time 10.54 and trace mass 56, compound name is double bond 5-Dodecene, (E)- ( $C_{11}H_{24}$ ), retention time 11.99 and trace mass 57, compound is single bond Decane ( $C_{10}H_{22}$ ), retention time 13.95 and trace mass 56, compound is Cyclobutane, 1-hexyl-2,3dimethyl- ( $C_{11}H_{24}$ ), retention time 17.95 and trace mass 55, compound is 6-Dodecene, (Z)- ( $C_{12}H_{24}$ ), retention time 20.19 and trace mass 57, compound is single bond Tridecane (C13H26) etc. As well retention time21.76 and trace mass 56, compound is 2-Butyl-1-decene ( $C_{14}H_{28}$ ), retention time 31.07 and trace mass 57, compound is single bond Nonadecane ( $C_{19}H_{40}$ ), retention time 36.19 and trace mass 55, compound is double bond 1, 19-Eicosadiene ( $C_{20}H_{38}$ ), retention time 37.94 and trace mass 97, compound is alcoholic Eicosanol ( $C_{20}H_{42}O$ ), retention time 39.40 and trace mass 55, compound is 1, 15-Pentadecanediol ( $C_{15}H_{32}O_2$ ) etc. At the last phase of the analysis index retention time 40.92 and trace mass 82, compound is 1, 19-Eicosadiene ( $C_{20}H_{38}$ ), retention time 42.44 and trace mass 55, compound is double bond 9-Tricosene, (Z)- ( $C_{23}H_{46}$ ), retention time 43.77 and trace mass 82, compound is 1,19-Eicosadiene ( $C_{20}H_{38}$ ), retention time 46.72 and trace mass 83, compound is 1-Eicosanol ( $C_{20}H_{42}O$ ) and ultimately retention time 48.34 and trace mass 43 compound is alcoholic 1-eicosanol ( $C_{20}H_{42}O$ ) etc.



**Figure 5:** GC/MS chromatogram of LDPE standard plastic

| Peak   | Retention | Trace | Compound                | Compound | Molecular | Probability | NIST    |
|--------|-----------|-------|-------------------------|----------|-----------|-------------|---------|
| Number | Time      | Mass  | Name                    | Formula  | Weight    | %           | Library |
|        | (min.)    | (m/z) |                         |          |           |             | Number  |
| 1      | 2.21      | 41    | Cyclopropane            | C3H6     | 42        | 32.7        | 18854   |
| 2      | 2.28      | 41    | 2-Butene, (E)-          | C4H8     | 56        | 14.0        | 105     |
| 3      | 2.48      | 55    | Cyclopropane, 1,2-      | C5H10    | 70        | 17.2        | 114453  |
|        |           |       | dimethyl-, trans-       |          |           |             |         |
| 4      | 2.61      | 67    | 1,3-Pentadiene          | C5H8     | 68        | 17.3        | 291890  |
| 5      | 2.76      | 67    | Cyclopentene            | C5H8     | 68        | 20.8        | 19032   |
| 6      | 2.90      | 67    | 1,5-Hexadiene           | C6H10    | 82        | 35.2        | 227588  |
| 7      | 2.97      | 42    | 1-Hexene                | C6H12    | 84        | 25.0        | 227613  |
| 8      | 3.57      | 67    | Cyclopentene, 1-methyl- | C6H10    | 82        | 11.5        | 231297  |
| 9      | 3.73      | 78    | Benzene                 | C6H6     | 78        | 74.2        | 221957  |
| 10     | 3.96      | 67    | Cyclohexene             | C6H10    | 82        | 14.6        | 114431  |
| 11     | 4.09      | 56    | 1-Heptene               | C7H14    | 98        | 33.5        | 19704   |
| 12     | 4.23      | 43    | Heptane                 | C7H16    | 100       | 43.3        | 61276   |
| 13     | 4.49      | 55    | 2-Heptene               | C7H14    | 98        | 12.6        | 113119  |
| 14     | 4.62      | 81    | Norbornane              | C7H12    | 96        | 10.6        | 114371  |
| 15     | 4.66      | 67    | 1,4-Heptadiene          | C7H12    | 96        | 20.0        | 113639  |

| 16 | 4.72  | 55       | Cyclohexane, methyl-                               | C7H14                             | 98   | 27.7 | 118503 |
|----|-------|----------|----------------------------------------------------|-----------------------------------|------|------|--------|
| 17 | 5.02  | 81       | Cyclohexene, 4-methyl-                             | C7H12                             | 96   | 18.7 | 125422 |
| 18 | 5.59  | 91       | Toluene                                            | C7H8                              | 92   | 47.9 | 61211  |
| 19 | 5.79  | 67       | 7-                                                 | C9H16                             | 124  | 7.68 | 210902 |
|    |       |          | Methylbicyclo[4.2.0]octa                           |                                   |      |      |        |
| 20 | 5.01  | 4.1      | ne                                                 | C II                              | 110  | 165  | (2101  |
| 20 | 5.91  | 41       | I,7-Octadiene                                      | C <sub>8</sub> H <sub>14</sub>    | 110  | 16.5 | 62191  |
| 21 | 6.12  | 55       | 1-Octene                                           | C <sub>8</sub> H <sub>16</sub>    | 112  | 17.1 | 227923 |
| 22 | 6.34  | 43       | Octane                                             | C <sub>8</sub> H <sub>18</sub>    | 114  | 40.2 | 61242  |
| 23 | 7.00  | 67       | 1,4-Octadiene                                      | C <sub>8</sub> H <sub>14</sub>    | 110  | 28.3 | 113431 |
| 24 | 7.28  | 55       | 2,/-Octadien-1-ol                                  | С8Н14О                            | 126  | 10.3 | 237434 |
| 25 | 7.99  | 91       | Ethylbenzene                                       | C <sub>8</sub> H <sub>10</sub>    | 106  | 38.5 | 114918 |
| 26 | 8.25  | 91       | p-Xylene                                           | C <sub>8</sub> H <sub>10</sub>    | 106  | 20.2 | 150787 |
| 27 | 8.47  | 55       | Cyclopentane, 1-methyl-<br>2-(2-propenvl)-, trans- | С9Н16                             | 124  | 24.5 | 26931  |
| 28 | 8.57  | 54       | 1,8-Nonadiene                                      | C9H16                             | 124  | 31.7 | 107523 |
| 29 | 8.85  | 56       | 1-Nonene                                           | C9H18                             | 126  | 14.7 | 107756 |
| 30 | 9.08  | 43       | Nonane                                             | C9H20                             | 128  | 38.8 | 228006 |
| 31 | 10.46 | 67       | 2-Nonen-1-ol, (Z)-                                 | C9H18O                            | 142  | 13.2 | 53342  |
| 32 | 11.53 | 55       | 1,9-Decadiene                                      | C10H18                            | 138  | 21.8 | 232355 |
| 33 | 11.80 | 41       | 1-Decene                                           | C <sub>10</sub> H <sub>20</sub>   | 140  | 12.8 | 118883 |
| 34 | 12.04 | 57       | Decane                                             | C <sub>10</sub> H <sub>22</sub>   | 142  | 41.0 | 114147 |
| 35 | 13.38 | 115      | Benzene, 1-ethynyl-4-                              | C9H8                              | 116  | 22.9 | 43759  |
| 26 | 14 44 |          | methyl-                                            | C. H.                             | 1.50 | 26.2 | 112574 |
| 36 | 14.44 | 55<br>41 |                                                    | C11H20                            | 152  | 36.3 | 113574 |
| 3/ | 14.70 | 41       | I-Undecene                                         | C11H22                            | 154  | 5.52 | 5022   |
| 38 | 14.92 | 57       | Undecane                                           | C11H24                            | 156  | 29.3 | 249213 |
| 39 | 15.05 | 55<br>41 | 5-Undecene, (E)-                                   | C11H22                            | 154  | 4.68 | 114227 |
| 40 | 17.21 | 41       | 1,11-Dodecadiene                                   | C12H22                            | 100  | 26.6 | 113595 |
| 41 | 17.45 | 43       | I-Dodecene                                         | C12H24                            | 108  | 6.65 | 10/688 |
| 42 | 17.66 | 5/       | Dodecane                                           | С12Н26                            | 1/0  | 27.4 | 291499 |
| 43 | 19.84 | 41       | 1,13-1 etradecadiene                               | С14Н26                            | 194  | 15.5 | 113612 |
| 44 | 20.06 | 55       | 1-Iridecene                                        | С13Н26                            | 182  | 10.3 | 10//68 |
| 45 | 20.25 | 57       | Tridecane                                          | С13Н28                            | 184  | 37.6 | 114282 |
| 46 | 22.30 | 41       | 1,13-Tetradecadiene                                | C <sub>14</sub> H <sub>26</sub>   | 194  | 19.2 | 113612 |
| 47 | 22.51 | 41       | 1-Tetradecene                                      | C <sub>14</sub> H <sub>28</sub>   | 196  | 5.03 | 69725  |
| 48 | 22.68 | 57       | Tetradecane                                        | C <sub>14</sub> H <sub>30</sub>   | 198  | 33.5 | 113925 |
| 49 | 24.63 | 55       | 1,13-Tetradecadiene                                | C <sub>14</sub> H <sub>26</sub>   | 194  | 8.10 | 113612 |
| 50 | 24.81 | 41       | 1-Pentadecanol                                     | C <sub>15</sub> H <sub>32</sub> O | 228  | 5.53 | 154949 |
| 51 | 24.97 | 57       | Pentadecane                                        | C <sub>15</sub> H <sub>32</sub>   | 212  | 20.1 | 107761 |
| 52 | 26.83 | 55       | 11-Hexadecen-1-ol, (Z)-                            | C <sub>16</sub> H <sub>32</sub> O | 240  | 13.9 | 108369 |
| 53 | 27.01 | 41       | 1-Hexadecene                                       | C <sub>16</sub> H <sub>32</sub>   | 224  | 8.10 | 118882 |
| 54 | 27.14 | 57       | Hexadecane                                         | C <sub>16</sub> H <sub>34</sub>   | 226  | 22.7 | 114191 |
| 55 | 27.32 | 57       | Z-10-Pentadecen-1-ol                               | C <sub>15</sub> H <sub>30</sub> O | 226  | 5.51 | 245485 |
| 56 | 28.91 | 55       | 11-Hexadecen-1-ol, (Z)-                            | C <sub>16</sub> H <sub>32</sub> O | 240  | 6.54 | 108369 |
| 57 | 29.06 | 55       | E-14-Hexadecenal                                   | C <sub>16</sub> H <sub>30</sub> O | 238  | 8.68 | 130980 |
| 58 | 29.20 | 57       | Heptadecane                                        | C17H36                            | 240  | 17.7 | 107308 |

| 59 | 30.89 | 55 | 11-Hexadecen-1-ol, (Z)- | C <sub>16</sub> H <sub>32</sub> O | 240 | 6.44 | 108369 |
|----|-------|----|-------------------------|-----------------------------------|-----|------|--------|
| 60 | 31.03 | 55 | E-15-Heptadecenal       | C <sub>17</sub> H <sub>32</sub> O | 252 | 9.30 | 130979 |
| 61 | 31.14 | 57 | Octadecane              | C <sub>18</sub> H <sub>38</sub>   | 254 | 17.0 | 57273  |
| 62 | 31.34 | 57 | Oxirane, tetradecyl-    | C <sub>16</sub> H <sub>32</sub> O | 240 | 8.07 | 113147 |
| 63 | 32.78 | 55 | 1,19-Eicosadiene        | C <sub>20</sub> H <sub>38</sub>   | 278 | 9.35 | 241604 |
| 64 | 32.90 | 55 | 1-Nonadecene            | C19H38                            | 266 | 12.5 | 113626 |
| 65 | 33.01 | 57 | Nonadecane              | C <sub>19</sub> H <sub>40</sub>   | 268 | 26.6 | 114098 |
| 66 | 34.58 | 55 | 1,19-Eicosadiene        | C <sub>20</sub> H <sub>38</sub>   | 278 | 15.2 | 241604 |
| 67 | 34.68 | 43 | 1-Nonadecene            | C19H38                            | 266 | 7.49 | 113626 |
| 68 | 34.79 | 57 | Eicosane                | C <sub>20</sub> H <sub>42</sub>   | 282 | 14.9 | 149863 |
| 69 | 36.28 | 55 | 1,19-Eicosadiene        | C <sub>20</sub> H <sub>38</sub>   | 278 | 18.0 | 241604 |
| 70 | 36.38 | 57 | 1-Docosene              | C <sub>22</sub> H <sub>44</sub>   | 308 | 11.3 | 113878 |
| 71 | 36.46 | 57 | Heneicosane             | C <sub>21</sub> H <sub>44</sub>   | 296 | 18.7 | 107569 |
| 72 | 37.92 | 55 | 1,19-Eicosadiene        | C <sub>20</sub> H <sub>38</sub>   | 278 | 17.7 | 241604 |
| 73 | 38.01 | 55 | 1-Docosene              | C <sub>22</sub> H <sub>44</sub>   | 308 | 12.9 | 113878 |
| 74 | 38.10 | 57 | Heneicosane             | C <sub>21</sub> H <sub>44</sub>   | 296 | 10.0 | 107569 |
| 75 | 39.49 | 55 | 1,19-Eicosadiene        | C <sub>20</sub> H <sub>38</sub>   | 278 | 11.8 | 241604 |
| 76 | 39.58 | 43 | 1-Docosene              | C <sub>22</sub> H <sub>44</sub>   | 308 | 8.99 | 113878 |
| 77 | 41.02 | 55 | 1,19-Eicosadiene        | C <sub>20</sub> H <sub>38</sub>   | 278 | 9.60 | 241604 |
| 78 | 41.08 | 55 | 1-Docosene              | C <sub>22</sub> H <sub>44</sub>   | 308 | 10.4 | 113878 |
| 79 | 42.47 | 55 | 1,19-Eicosadiene        | C <sub>20</sub> H <sub>38</sub>   | 278 | 10.4 | 241604 |
| 80 | 42.53 | 57 | 1-Docosene              | C <sub>22</sub> H <sub>44</sub>   | 308 | 9.47 | 113878 |
| 81 | 43.94 | 55 | 1-Eicosanol             | C <sub>20</sub> H <sub>42</sub> O | 298 | 7.27 | 113075 |
| 82 | 45.32 | 57 | 1-Eicosanol             | C <sub>20</sub> H <sub>42</sub> O | 298 | 21.2 | 113075 |
| 83 | 46.82 | 55 | 1-Eicosanol             | C <sub>20</sub> H <sub>42</sub> O | 298 | 20.2 | 113075 |

Perkin Elmer GC/MS pyroprobe analysis (Fig.5 and table 8) of raw LDPE standard plastics inside of pyroprobe raw solid standard plastics turns into volatile gas with high temperature at 1200 °C and that volatile gas passed through the column to gas chromatography, helium (He) is used as a carrier gas and then sends the volatile gas to the mass spectroscopy and in mass compounds are detected according to the boiling point of individual compound and among those only several compounds are introduced as well elaborated in the analysis. In accordance with the retention time and trace masses numerous different types of hydrocarbon compound and benzene derivatives compounds are appeared in the analysis result index. Many compounds are emerged on the analysis carbon range  $C_3$ to  $C_{22}$ . In the initial state of the analysis index according to the retention time such as retention time 2.21 and trace mass 41, compound is single bond Cyclopropane ( $C_3H_6$ ), retention time 2.28 and trace mass 41 compound is double bond 2-Butene, (E)- ( $C_4H_8$ ), retention time 2.48 and trace mass 55, compound is single bond Cyclopropane, 1,2dimethyl-, trans ( $C_5H_{10}$ ), retention time 2.61 and trace mass 67, compound is 1-3 Pentadiene ( $C_5H_8$ ), retention time 2.97 and trace mass 42, compound is 1-Hexene ( $C_6H_{12}$ ), retention time 3.57 and trace mass 67, compound is double bond Cyclopentene, 1-methyl- ( $C_6H_{10}$ ), retention time 3.96 and trace mass 67, compound is Cyclohexene ( $C_6H_{10}$ ), retention time 4.09 and trace mass 56, compound name is 1-Heptene ( $C_7H_{14}$ ), retention time 4.23 and trace mass 43, compound is Heptane (C7H6), retention time 4.66 and trace mass 67, compound is 1,4-Heptadiene (C7H12), retention time 5.02 and trace mass 81, compound is Cyclohexane, 4-methyl- ( $C_7H_{12}$ ), retention time 5.59 and trace mass 91, compound is Toluene ( $C_7H_8$ ), retention time 5.79 and trace mass 67, compound is double bond 7-Methylbicyclo[4.2.0]octane (C<sub>9</sub>H<sub>16</sub>), retention time 6.12 and trace mass 55, compound is double bonding 1-Octene (  $C_8H_{16}$ , retention time 7.00 and trace mass 67, compound is 1,4-Octadiene (C8H14), retention time 7.18 and trace mass 55, compound is 2,7-Octdoine-1-ol Octadiene (C8H14O), retention time 8.85 and trace mass 55, compound is 1-Nonene ( $C_9H_{18}$ ), retention time 9.08 and trace mass 43, compound is Nonane ( $C_9H_{20}$ ), retention time 10.46 and trace mass 67, compound name is 2-Nonene-1-ol (Z)-, ( $C_9H_{18}O$ ), retention time 11.80 and trace mass 41, compound is double bond 1-Decene ( $C_{10}H_{20}$ ), retention time 13.38 and trace mass 115, compound is Benzene, 1-ethynyl-4-methyl- ( $C_9H_8$ ), retention time 14.92 and trace mass 57, compound is Undecane, ( $C_{11}H_{24}$ ), retention time 17.66 and trace mass 57, compound is single bond Dodecane ( $C_{12}H_{26}$ ) etc. As well retention time22.68 and trace mass 57, compound is Tetradecane ( $C_{14}H_{30}$ ), retention time 31.03 and trace mass 55, compound is alcoholic E-15-Heptadecenal ( $C_7H_{32}O$ ), retention time 36.46 and trace mass 57, compound is Heneicosane ( $C_{21}H_{44}$ ), retention time 37.92 and trace mass 55, compound is 1,19- Eicosandiene ( $C_{20}H_{38}$ ), retention time 39.58 and trace mass 43, compound is 1, 19-Eicosadiene ( $C_{20}H_{38}$ ), retention time 42.47 and trace mass 55, compound is 1, 19-Eicosadiene ( $C_{20}H_{38}$ ), retention time 42.47 and trace mass 55, compound is 1, 19-Eicosandiene ( $C_{20}H_{42}O$ ) and ultimately retention time 46.82 and trace mass 55 compound is alcoholic 1-Eicosanol ( $C_{20}H_{42}O$ ) etc. here appearing that several oxygen compounds are produced because in the reactor during reaction phase oxygen induce from steam and moisture as well.

#### **3.3. Liquid Fuel Analysis**



Figure 6: GC/MS Chromatogram of LDPE waste plastic to fuel

Table 9: LDPE waste plastic to fuel GC/MS chromatogram compound list

| Peak<br>Number | Retention<br>Time<br>(min.) | Trace<br>Mass<br>(m/z) | Compound<br>Name | Compound<br>Formula | Molecular<br>Weight | Probability<br>% | NIST<br>Library<br>Number |
|----------------|-----------------------------|------------------------|------------------|---------------------|---------------------|------------------|---------------------------|
| 1              | 1.50                        | 39                     | Propane          | C3H8                | 44                  | 87.5             | 18863                     |
| 2              | 1.61                        | 43                     | Butane           | C4H10               | 58                  | 63.5             | 18940                     |

Copyright © 2012 www.scitecpub.com

| 3  | 1.88 | 42 | Cyclopropane, ethyl-                    | C5H10                             | 70  | 18.0 | 250    |
|----|------|----|-----------------------------------------|-----------------------------------|-----|------|--------|
| 4  | 1.91 | 43 | Pentane                                 | C5H12                             | 72  | 83.1 | 114462 |
| 5  | 1.95 | 55 | 1-Butene, 3-methyl-                     | C5H10                             | 70  | 18.1 | 114463 |
| 6  | 2.02 | 55 | Cyclopropane, 1,2-<br>dimethyl-, cis-   | C5H10                             | 70  | 25.5 | 19070  |
| 7  | 2.06 | 67 | 1,3-Pentadiene                          | С5Н8                              | 68  | 21.0 | 291890 |
| 8  | 2.13 | 67 | 1,4-Pentadiene                          | С5Н8                              | 68  | 18.2 | 114494 |
| 9  | 2.25 | 67 | 2,3-Diazabicyclo[2.2.1]-<br>hept-2-ene  | C5H8N2                            | 96  | 14.2 | 142950 |
| 10 | 2.50 | 41 | 1-Hexene                                | C6H12                             | 84  | 17.3 | 500    |
| 11 | 2.57 | 57 | Hexane                                  | C6H14                             | 86  | 73.4 | 291337 |
| 12 | 2.72 | 67 | 3-Hexen-1-ol, (Z)-                      | C <sub>6</sub> H <sub>12</sub> O  | 100 | 13.4 | 114154 |
| 13 | 2.84 | 67 | 1,3-Hexadiene,c&t                       | C6H10                             | 82  | 7.85 | 231295 |
| 14 | 2.90 | 56 | Cyclopentane, methyl-                   | C6H12                             | 84  | 66.5 | 114428 |
| 15 | 3.00 | 67 | 4-Methyl-2-pentyne                      | C6H10                             | 82  | 16.6 | 231299 |
| 16 | 3.14 | 67 | Cyclopentene, 3-methyl-                 | C6H10                             | 82  | 14.0 | 114408 |
| 17 | 3.30 | 56 | Cyclohexane                             | C6H12                             | 84  | 24.5 | 228008 |
| 18 | 3.62 | 41 | Cyclopentane, 1,2-<br>dimethyl-, cis-   | C7H14                             | 98  | 30.3 | 114027 |
| 19 | 3.74 | 43 | Heptane                                 | C7H16                             | 100 | 69.0 | 61276  |
| 20 | 4.06 | 81 | Cyclopentane, 1-methyl-<br>2-methylene- | C7H12                             | 96  | 8.69 | 62523  |
| 21 | 4.16 | 55 | Cyclohexane, methyl-                    | C7H14                             | 98  | 58.9 | 118503 |
| 22 | 4.31 | 69 | Cyclopentane, ethyl-                    | C7H14                             | 98  | 40.3 | 940    |
| 23 | 4.44 | 67 | Norbornane                              | C7H12                             | 96  | 9.79 | 114371 |
| 24 | 4.61 | 67 | 1-Ethylcyclopentene                     | C7H12                             | 96  | 37.3 | 114407 |
| 25 | 4.80 | 91 | Toluene                                 | С7Н8                              | 92  | 24.5 | 291301 |
| 26 | 4.86 | 81 | Cyclohexene, 4-methyl-                  | C7H12                             | 96  | 12.7 | 125422 |
| 27 | 5.05 | 79 | 1,3,6-Heptatriene                       | C7H10                             | 94  | 16.3 | 113127 |
| 28 | 5.15 | 41 | 1-Octene                                | C8H16                             | 112 | 24.1 | 1604   |
| 29 | 5.30 | 41 | Octane                                  | C8H18                             | 114 | 55.3 | 229407 |
| 30 | 5.39 | 55 | 3-Octene, (Z)-                          | C8H16                             | 112 | 12.3 | 113895 |
| 31 | 5.47 | 95 | 1-Methyl-2-<br>methylenecyclohexane     | C8H14                             | 110 | 8.30 | 113437 |
| 32 | 5.65 | 67 | Cyclopentene, 1-(1-<br>methylethyl)-    | C8H14                             | 110 | 8.37 | 113932 |
| 33 | 5.74 | 81 | Cyclohexane, ethylidene-                | C <sub>8</sub> H <sub>14</sub>    | 110 | 8.98 | 1494   |
| 34 | 5.91 | 41 | 2,4-Decadien-1-ol                       | C <sub>10</sub> H <sub>18</sub> O | 154 | 6.65 | 136415 |
| 35 | 5.98 | 55 | Cyclohexane, ethyl-                     | C <sub>8</sub> H <sub>16</sub>    | 112 | 50.6 | 113476 |
| 36 | 6.12 | 67 | 4-Octyne                                | $C_8H_{14}$                       | 110 | 12.3 | 118189 |
| 37 | 6.25 | 41 | 2,4-Decadien-1-ol                       | C <sub>10</sub> H <sub>18</sub> O | 154 | 7.79 | 136415 |
| 38 | 6.55 | 81 | Cyclohexanol, 1-ethynyl-, carbamate     | C9H13NO2                          | 167 | 13.8 | 313023 |
| 39 | 6.61 | 67 | 1-Methyl-2-<br>methylenecyclohexane     | C8H14                             | 110 | 5.15 | 113437 |
| 40 | 6.87 | 41 | cis-2-Nonene                            | C9H18                             | 126 | 10.6 | 113508 |
| 41 | 6.96 | 91 | Bicyclo[2.1.1]hexan-2-ol,<br>2-ethenyl- | C <sub>8</sub> H <sub>12</sub> O  | 124 | 32.1 | 221372 |
| 42 | 7.02 | 43 | Nonane                                  | C9H20                             | 128 | 34.4 | 228006 |

| 43 | 7.44  | 67 | Ethylidenecycloheptane                                           | C9H16                                          | 124 | 17.6 | 113500 |
|----|-------|----|------------------------------------------------------------------|------------------------------------------------|-----|------|--------|
| 44 | 7.66  | 55 | Cyclopentane, butyl-                                             | C9H18                                          | 126 | 21.8 | 114172 |
| 45 | 8.12  | 41 | Cyclopentanol, 1-(1-<br>methylene-2-propenyl)-                   | C9H14O                                         | 138 | 7.53 | 152742 |
| 46 | 8.24  | 41 | 2-Decen-1-ol                                                     | C <sub>10</sub> H <sub>20</sub> O              | 156 | 12.6 | 136260 |
| 47 | 8.41  | 55 | E-1,6-Undecadiene                                                | C11H20                                         | 152 | 4.56 | 245712 |
| 48 | 8.59  | 41 | 1-Decene                                                         | C <sub>10</sub> H <sub>20</sub>                | 140 | 25.5 | 118883 |
| 49 | 8.74  | 43 | Decane                                                           | C <sub>10</sub> H <sub>22</sub>                | 142 | 58.2 | 114147 |
| 50 | 8.81  | 55 | 2-Decene, (Z)-                                                   | C <sub>10</sub> H <sub>20</sub>                | 140 | 15.2 | 114151 |
| 51 | 9.40  | 55 | Cyclodecane                                                      | C <sub>10</sub> H <sub>20</sub>                | 140 | 6.73 | 113565 |
| 52 | 9.56  | 67 | Cyclopentene, 1-pentyl-                                          | C10H18                                         | 138 | 10.0 | 139585 |
| 53 | 9.65  | 41 | Tricyclo[4.2.1.1(2,5)]deca<br>n-3-ol                             | C <sub>10</sub> H <sub>16</sub> O              | 152 | 9.72 | 191707 |
| 54 | 9.80  | 41 | Cyclohexene, 3-(2-<br>methylpropyl)-                             | C10H18                                         | 138 | 15.2 | 27008  |
| 55 | 10.07 | 41 | Carane, 4,5-epoxy-, trans                                        | C <sub>10</sub> H <sub>16</sub> O              | 152 | 5.23 | 156142 |
| 56 | 10.13 | 41 | 3-Undecene, (E)-                                                 | $C_{11}H_{22}$                                 | 154 | 7.67 | 60565  |
| 57 | 10.24 | 41 | 1-Undecene                                                       | $C_{11}H_{22}$                                 | 154 | 6.39 | 5022   |
| 58 | 10.38 | 43 | Undecane                                                         | $C_{11}H_{24}$                                 | 156 | 50.5 | 114185 |
| 59 | 10.44 | 41 | 5-Undecene, (E)-                                                 | $C_{11}H_{22}$                                 | 154 | 10.3 | 114227 |
| 60 | 10.59 | 41 | 2-Pentadecyn-1-ol                                                | C <sub>15</sub> H <sub>28</sub> O              | 224 | 12.8 | 36724  |
| 61 | 11.07 | 41 | 3-Undecene, (E)-                                                 | $C_{11}H_{22}$                                 | 154 | 6.82 | 60565  |
| 62 | 11.18 | 67 | 1-Undecyne                                                       | $C_{11}H_{20}$                                 | 152 | 7.22 | 36306  |
| 63 | 11.40 | 41 | Cyclopentaneacetaldehyd<br>e, 2-formyl-3-methyl-α-<br>methylene- | C <sub>10</sub> H <sub>14</sub> O <sub>2</sub> | 166 | 5.72 | 57743  |
| 64 | 11.80 | 41 | 3-Dodecene, (E)-                                                 | C12H24                                         | 168 | 9.23 | 113960 |
| 65 | 11.92 | 43 | Dodecane                                                         | C12H26                                         | 170 | 32.3 | 291499 |
| 66 | 11.98 | 41 | 3-Dodecene, (E)-                                                 | C <sub>12</sub> H <sub>24</sub>                | 168 | 15.8 | 70642  |
| 67 | 13.15 | 41 | 2-Tridecene, (Z)-                                                | C13H26                                         | 182 | 5.66 | 142613 |
| 68 | 13.27 | 41 | 1-Tridecene                                                      | C13H26                                         | 182 | 8.29 | 107768 |
| 69 | 13.39 | 71 | Tridecane                                                        | C13H28                                         | 184 | 36.6 | 114282 |
| 70 | 13.43 | 41 | 5-Tridecene, (E)-                                                | C13H26                                         | 182 | 7.54 | 142619 |
| 71 | 13.58 | 41 | 4-Nonene, 5-butyl-                                               | C13H26                                         | 182 | 6.84 | 34734  |
| 72 | 13.99 | 41 | 1,12-Tridecadiene                                                | C <sub>13</sub> H <sub>24</sub>                | 180 | 7.10 | 7380   |
| 73 | 14.10 | 41 | 1-Nonadecanol                                                    | C <sub>19</sub> H <sub>40</sub> O              | 284 | 4.35 | 13666  |
| 74 | 14.64 | 41 | 1-Tetradecene                                                    | C <sub>14</sub> H <sub>28</sub>                | 196 | 6.78 | 34720  |
| 75 | 14.76 | 57 | Tetradecane                                                      | C <sub>14</sub> H <sub>30</sub>                | 198 | 27.1 | 113925 |
| 76 | 14.80 | 41 | 7-Tetradecene                                                    | C <sub>14</sub> H <sub>28</sub>                | 196 | 8.54 | 70643  |
| 77 | 15.85 | 41 | Z-10-Pentadecen-1-ol                                             | C <sub>15</sub> H <sub>30</sub> O              | 226 | 8.55 | 245485 |
| 78 | 15.95 | 41 | 1-Pentadecene                                                    | C <sub>15</sub> H <sub>30</sub>                | 210 | 5.75 | 69726  |
| 79 | 10.04 | 57 | Pentadecane                                                      | C <sub>15</sub> H <sub>32</sub>                | 212 | 25.3 | 107761 |
| 80 | 16.08 | 41 | E-2-Hexadecacen-1-ol                                             | C <sub>16</sub> H <sub>32</sub> O              | 240 | 13.2 | 131101 |
| 81 | 16.82 | 41 | E-2-Octadecadecen-1-ol                                           | C <sub>18</sub> H <sub>36</sub> O              | 268 | 7.09 | 131102 |
| 82 | 17.18 | 41 | 1-Hexadecene                                                     | C <sub>16</sub> H <sub>32</sub>                | 224 | 9.91 | 118882 |
| 83 | 17.28 | 43 | Hexadecane                                                       | C <sub>16</sub> H <sub>34</sub>                | 226 | 2.6  | 114191 |
| 84 | 17.31 | 55 | Hexadecen-1-ol, trans-9-                                         | C <sub>16</sub> H <sub>32</sub> O              | 240 | 5.37 | 141055 |
| 85 | 18.00 | 41 | 1-Docosanol                                                      | C <sub>22</sub> H <sub>46</sub> O              | 326 | 5.95 | 23377  |

| 86  | 18.35 | 55 | 1-Heptadecanol      | C <sub>17</sub> H <sub>36</sub> O | 256 | 7.46 | 113250 |
|-----|-------|----|---------------------|-----------------------------------|-----|------|--------|
| 87  | 18.44 | 43 | Heptadecane         | C <sub>17</sub> H <sub>36</sub>   | 240 | 19.9 | 107308 |
| 88  | 18.47 | 55 | 8-Heptadecene       | C <sub>17</sub> H <sub>34</sub>   | 238 | 8.23 | 113620 |
| 89  | 19.46 | 83 | 1-Octadecanol       | C <sub>18</sub> H <sub>38</sub> O | 270 | 5.04 | 221125 |
| 90  | 19.55 | 57 | Octadecane          | C <sub>18</sub> H <sub>38</sub>   | 254 | 18.3 | 12337  |
| 91  | 19.63 | 55 | 1-Eicosanol         | C <sub>20</sub> H <sub>42</sub> O | 298 | 7.01 | 113075 |
| 92  | 20.61 | 71 | Eicosane            | C <sub>20</sub> H <sub>42</sub>   | 282 | 26.1 | 290513 |
| 93  | 21.52 | 55 | 1-Docosene          | C <sub>22</sub> H <sub>44</sub>   | 308 | 7.07 | 113878 |
| 94  | 21.61 | 43 | Eicosane            | C <sub>20</sub> H <sub>42</sub>   | 282 | 25.3 | 290513 |
| 95  | 21.97 | 97 | 1-Eicosene          | C <sub>20</sub> H <sub>40</sub>   | 280 | 8.35 | 13488  |
| 96  | 22.56 | 70 | Eicosane            | C <sub>20</sub> H <sub>42</sub>   | 282 | 15.4 | 290513 |
| 97  | 23.48 | 99 | Eicosane            | C <sub>20</sub> H <sub>42</sub>   | 282 | 14.1 | 290513 |
| 98  | 23.65 | 55 | 1-Eicosanol         | C <sub>20</sub> H <sub>42</sub> O | 298 | 8.30 | 113075 |
| 99  | 24.36 | 43 | Eicosane            | C <sub>20</sub> H <sub>42</sub>   | 282 | 12.3 | 290513 |
| 100 | 25.21 | 99 | Eicosane            | C <sub>20</sub> H <sub>42</sub>   | 282 | 12.8 | 290513 |
| 101 | 25.94 | 55 | 1-Docosanol         | C <sub>22</sub> H <sub>46</sub> O | 326 | 10.4 | 23377  |
| 102 | 26.03 | 57 | Eicosane            | C <sub>20</sub> H <sub>42</sub>   | 282 | 12.5 | 290513 |
| 103 | 26.84 | 57 | Heneicosane         | C <sub>21</sub> H <sub>44</sub>   | 296 | 11.8 | 107569 |
| 104 | 27.64 | 57 | Heneicosane         | C <sub>21</sub> H <sub>44</sub>   | 296 | 11.8 | 107569 |
| 105 | 28.42 | 57 | Heneicosane         | C <sub>21</sub> H <sub>44</sub>   | 296 | 6.67 | 107569 |
| 106 | 28.68 | 57 | 17-Pentatriacontene | C35H70                            | 490 | 14.9 | 233160 |
| 107 | 29.20 | 57 | Hexacosane          | C <sub>26</sub> H <sub>54</sub>   | 366 | 8.06 | 107147 |
| 108 | 29.99 | 57 | Tetratetracontane   | C44H90                            | 618 | 9.63 | 23773  |
| 109 | 30.82 | 57 | Heptacosane         | C <sub>27</sub> H <sub>56</sub>   | 380 | 17.6 | 79427  |
| 110 | 32.86 | 57 | Heptacosane         | C <sub>27</sub> H <sub>56</sub>   | 380 | 15.8 | 79427  |

From GC/MS analysis of waste LDPE plastic to fuel (fig.6 and table 9) in accordance with retention time and trace mass indicate various types of compound are present. High intensity compounds are preferred in the analysis. An investigated carbon range in the analyzed plastic is  $C_3$  to  $C_{44}$  because large carbon chains are breaking down into small chain resulting in lower carbon range. Sometimes noticed that for high peak intensity compound probability factor is low percentage, where as in low peak intensity compound probability factor is high percentage. Most of the peaks are considered in the analysis and as per their retention time and trace mass maximum peaks are mentioned, in accordance to retention time 1.49 and trace mass 41, derived compound is Cyclopropane  $(C_3H_6)$  with probability 67.2%, retention time 1.59 and trace mass 41, compound is 2-Butene, (E)-, (C4H<sub>8</sub>) with probability 18.5%, retention time 1.89 and trace mass 43, compound is Pentane ( $C_5H_{12}$ ) with probability 79.8%, retention time 2.03 and trace mass 67, compound is 1,3-Pentadiene (C5H8) with probability factor 17.4%, retention time 2.96 and trace mass 79, compound is 1,3-Cyclopentadiene, 5-methyl- ( $C_6H_8$ ) with probability 30.0%, retention time 3.09, trace mass 67, compound is Cyclopentene, 3-methyl-  $(C_6H_{10})$  with probability 12.2%, retention time 3.90 and trace mass 81, compound is 2,3-Dimethyl-1,4-pentadiene,  $(C_7H_{12})$  with probability 7.20%, retention time 4.01 and trace mass 81, compound is Cyclohexene, 3-methyl-, ( $C_7H_{12}$ ) with probability 9.73%, retention time 4.81 and trace mass 81, compound is Cyclohexene, 3-methyl-, (C<sub>7</sub>H<sub>12</sub>) with probability 8.73%, retention time 5.11 and trace mass 41, compound is 1-Octene ( $C_8H_{16}$ ) with probability 19.8%, retention time 5.94 and trace mass 83, compound is Cyclohexane, ethyl-, ( $C_8H_{16}$ ) with probability 56.2%, retention time 6.85 and trace mass 56, compound is trans-7-Methyl-3-octene ( $C_9H_{18}$ ) with probability 27.5%, retention time 7.00 and trace mass 43, compound is Nonane  $(C_9H_{20})$  with probability 28.8%, retention time 7.85 and trace mass 67, compound is Cyclopentene, 1-butyl- $(C_9H_{16})$ with probability 42.9% etc. Also in the middle of the analysis index retention time 8.80 and trace mass 41, compound is 2-Decene, (Z)- (C<sub>10</sub>H<sub>20</sub>) with probability 16.6%, retention time 10.24 and trace mass 41, compound is 1-Undecene ( $C_{11}H_{22}$ ) with probability 8.04%, retention time 10.58 and trace mass 41, compound is 2-Pentadecyn-1ol, ( $C_{15}H_{28}O$ ) with probability 11.9%, retention time 11.98 and trace mass 41, compound is 3-Dodecene, (E)-(C12H24) with probability 10.2% etc. As well as Retention time 13.59 and trace mass 142, compound is Bicyclo[4.4.1]undeca-1,3,5,7,9-pentaene,  $(C_{11}H_{10})$  with probability 29.2%, retention time 14.95 and trace mass 41, compound is Dodecylsuccinic anhydride ( $C_{16}H_{28}O_3$ ) with probability 4.78%, retention time 15.96 and trace mass 41, compound is Cyclopentadecane ( $C_{15}H_{30}$ ) with the probability 7.23% etc. Accordingly retention time 16.10 and trace mass 41, Compound is E-2-Hexadecacen-1-ol ( $C_{16}H_{32}O$ ) with probability 10.9%, retention time 20.55 and trace mass 41, compound is 9-Nonadecene ( $C_{19}H_{38}$ ) with probability 10.7%, retention time 21.65 and trace mass 43, compound is 4-Tetradecene, (E)-  $(C_{20}H_{42})$  with probability 41.2% etc. At the end phase of the analysis index high retention time and trace mass such as retention time 22.64 and trace mass 57, compound is Hexadecane ( $C_{21}H_{42}$ ) with probability 31.7%, retention time 23.59 and trace mass 85, compound is Heneicosane ( $C_{21}H_{44}$ ) with probability 10.8%, and ultimately retention time 27.80 and trace mass 57, compound is Octacosane ( $C_{28}H_{58}$ ) with probability 15.9% and retention time 24.53 and trace mass 57 , compound is Octacosane ( $C_{28}H_{58}$ ) with probability 10.7% and ultimately retention time 32.86 and trace mass 57, compound is Heptacosane ( $C_{27}H_{56}$ ) as well. In the earlier phase analysis appearing that in several oxygen compounds are produced because in the reactor during reaction oxygen induced from steam and water. Also noticed in the standard HDPE plastic to fuel including double bond compound as well as benzene and benzene derivatives compounds are available. In the middle of the analysis index also noticed that one or more alcoholic compounds are appeared as well.



**Figure 7:** GC/MS Chromatogram of LDPE standard plastic to fuel

| Table 10: LDPE standard | plastic to fuel GC/ | MS chromatogram co | mpound list |
|-------------------------|---------------------|--------------------|-------------|
|                         |                     | 6                  |             |

| NumberTimeMassNameFormulaWeight%Library(min.)(m/z)Number | Peak<br>Number | Retention<br>Time<br>(min.) | Trace<br>Mass<br>(m/z) | Compound<br>Name | Compound<br>Formula | Molecular<br>Weight | Probability<br>% | NIST<br>Library<br>Number |
|----------------------------------------------------------|----------------|-----------------------------|------------------------|------------------|---------------------|---------------------|------------------|---------------------------|
|----------------------------------------------------------|----------------|-----------------------------|------------------------|------------------|---------------------|---------------------|------------------|---------------------------|

Copyright © 2012 www.scitecpub.com

| 1  | 1    |    | D                                         | 0.11                              | 4.4 | 40.0 | 100/3  |
|----|------|----|-------------------------------------------|-----------------------------------|-----|------|--------|
| 1  | 1.57 | 41 | Propane                                   | C3H8                              | 44  | 49.2 | 18863  |
| 2  | 1.65 | 43 | Isobutane                                 | C4H10                             | 58  | 52.8 | 18936  |
| 3  | 1.69 | 41 | 1-Propene, 2-methyl-                      | C4H8                              | 56  | 34.3 | 61293  |
| 4  | 1.70 | 43 | Butane                                    | C4H10                             | 58  | 69.6 | 18940  |
| 5  | 1.75 | 41 | 1-Propene, 2-methyl-                      | C4H8                              | 56  | 21.2 | 61293  |
| 6  | 1.97 | 42 | Cyclopropane, ethyl-                      | C5H10                             | 70  | 24.8 | 19072  |
| 7  | 2.00 | 43 | Pentane                                   | C5H12                             | 72  | 86.1 | 114462 |
| 8  | 2.11 | 55 | Cyclopropane, 1,2-<br>dimethyl-, cis-     | C5H10                             | 70  | 24.4 | 19070  |
| 9  | 2.16 | 39 | 1,3-Pentadiene                            | C5H8                              | 68  | 19.4 | 291890 |
| 10 | 2.36 | 67 | 2,3-Diazabicyclo[2.2.1]-<br>hept-2-ene    | C5H8N2                            | 96  | 9.55 | 194998 |
| 11 | 2.42 | 42 | 1-Pentene                                 | C5H10                             | 70  | 8.38 | 19081  |
| 12 | 2.60 | 41 | Cyclopropane, 1-ethyl-2-<br>methyl-, cis- | C <sub>6</sub> H <sub>12</sub>    | 84  | 19.3 | 113658 |
| 13 | 2.68 | 41 | Hexane                                    | C6H14                             | 86  | 79.7 | 61280  |
| 14 | 2.74 | 55 | 3-Hexene, (Z)-                            | C6H12                             | 84  | 41.8 | 114381 |
| 15 | 2.83 | 67 | 1,3-Butadiene, 2-ethyl-                   | C6H10                             | 82  | 12.5 | 118159 |
| 16 | 2.96 | 67 | trans-1,4-Hexadiene                       | C6H10                             | 82  | 8.78 | 113648 |
| 17 | 3.01 | 56 | Cyclopentane, methyl-                     | C6H12                             | 84  | 63.0 | 114428 |
| 18 | 3.12 | 67 | 2,4-Hexadiene, (Z,Z)-                     | C6H10                             | 82  | 14.5 | 113646 |
| 19 | 3.26 | 67 | Cyclopentene, 3-methyl-                   | C6H10                             | 82  | 10.6 | 114408 |
| 20 | 3.42 | 41 | Cyclohexane                               | C6H12                             | 84  | 12.3 | 228008 |
| 21 | 3.74 | 41 | 1-Heptene                                 | C7H14                             | 98  | 16.4 | 107734 |
| 22 | 3.86 | 43 | Heptane                                   | C7H16                             | 100 | 69.0 | 61276  |
| 23 | 3.96 | 41 | 3-Heptene                                 | C7H14                             | 98  | 28.9 | 113117 |
| 24 | 4.09 | 81 | 1,2-Hexadiene, 5-methyl-                  | C7H12                             | 96  | 7.97 | 27634  |
| 25 | 4.30 | 55 | Cyclohexane, methyl-                      | C7H14                             | 98  | 55.3 | 118503 |
| 26 | 4.44 | 41 | Cyclopentane, ethyl-                      | C7H14                             | 98  | 34.2 | 231044 |
| 27 | 4.75 | 67 | 1-Ethylcyclopentene                       | C7H12                             | 96  | 38.8 | 114407 |
| 28 | 5.01 | 81 | Cyclohexene, 3-methyl-                    | C7H12                             | 96  | 8.09 | 19639  |
| 29 | 5.30 | 41 | 1-Octene                                  | C8H16                             | 112 | 25.3 | 1604   |
| 30 | 5.45 | 43 | Octane                                    | C8H18                             | 114 | 38.6 | 229407 |
| 31 | 5.55 | 55 | 3-Octene, (Z)-                            | C8H16                             | 112 | 11.1 | 113895 |
| 32 | 5.97 | 67 | 1-Methyl-2-<br>methylenecyclohexane       | C <sub>8</sub> H <sub>14</sub>    | 110 | 29.8 | 113437 |
| 33 | 6.08 | 41 | 3-Decyn-2-ol                              | C <sub>10</sub> H <sub>18</sub> O | 154 | 8.71 | 53449  |
| 34 | 6.14 | 83 | Cyclohexane, ethyl-                       | C <sub>8</sub> H <sub>16</sub>    | 112 | 55.1 | 113476 |
| 35 | 6.29 | 67 | 3-Octyne                                  | C8H14                             | 110 | 11.1 | 118185 |
| 36 | 6.72 | 81 | Cyclohexene, 1,2-<br>dimethyl-            | C <sub>8</sub> H <sub>14</sub>    | 110 | 8.39 | 113912 |
| 37 | 7.04 | 41 | cis-2-Nonene                              | C9H18                             | 126 | 11.4 | 113508 |
| 38 | 7.19 | 43 | Nonane                                    | C9H20                             | 128 | 30.6 | 228006 |
| 39 | 7.27 | 55 | 4-Nonene                                  | C9H18                             | 126 | 14.2 | 113904 |
| 40 | 7.61 | 67 | Ethylidenecycloheptane                    | C9H16                             | 124 | 19.2 | 113500 |
| 41 | 7.83 | 55 | Cyclopentane, butyl-                      | C9H18                             | 126 | 12.5 | 114172 |
| 42 | 8.05 | 67 | Cyclopentene, 1-butyl-                    | C9H16                             | 124 | 35.9 | 113491 |
| 43 | 8.42 | 56 | 2-Methyl-1-nonene                         | C <sub>10</sub> H <sub>20</sub>   | 140 | 11.0 | 113561 |

| 44 | 8.65  | 56 | trans-3-Decene                           | C <sub>10</sub> H <sub>20</sub>   | 140 | 6.74 | 113881 |
|----|-------|----|------------------------------------------|-----------------------------------|-----|------|--------|
| 45 | 8.77  | 41 | 1-Decene                                 | C <sub>10</sub> H <sub>20</sub>   | 140 | 23.1 | 118883 |
| 46 | 8.91  | 57 | Decane                                   | C <sub>10</sub> H <sub>22</sub>   | 142 | 49.0 | 114147 |
| 47 | 8.99  | 55 | 2-Decene, (Z)-                           | C <sub>10</sub> H <sub>20</sub>   | 140 | 13.8 | 114151 |
| 48 | 9.57  | 55 | 2,4-Undecadien-1-ol                      | C <sub>11</sub> H <sub>20</sub> O | 168 | 8.58 | 136410 |
| 49 | 9.73  | 67 | Cyclopentene, 1-pentyl-                  | C <sub>10</sub> H <sub>18</sub>   | 138 | 7.10 | 139585 |
| 50 | 10.30 | 56 | 4-Undecene, (Z)-                         | C <sub>11</sub> H <sub>22</sub>   | 154 | 6.33 | 142600 |
| 51 | 10.42 | 41 | 1-Undecene                               | C <sub>11</sub> H <sub>22</sub>   | 154 | 5.48 | 34717  |
| 52 | 10.56 | 43 | Undecane                                 | C <sub>11</sub> H <sub>24</sub>   | 156 | 50.8 | 114185 |
| 53 | 10.62 | 55 | 5-Undecene, (E)-                         | C <sub>11</sub> H <sub>22</sub>   | 154 | 11.9 | 114227 |
| 54 | 10.76 | 41 | 2-Pentadecyn-1-ol                        | C <sub>15</sub> H <sub>28</sub> O | 224 | 20.1 | 36724  |
| 55 | 11.24 | 41 | 2,4-Pentadien-1-ol, 3-<br>pentyl-, (2Z)- | C <sub>10</sub> H <sub>18</sub> O | 154 | 6.44 | 142197 |
| 56 | 11.86 | 41 | 3-Dodecene, (E)-                         | C <sub>12</sub> H <sub>24</sub>   | 168 | 4.00 | 70642  |
| 57 | 12.11 | 57 | Dodecane                                 | C <sub>12</sub> H <sub>26</sub>   | 170 | 34.2 | 291499 |
| 58 | 12.16 | 41 | 3-Dodecene, (E)-                         | C <sub>12</sub> H <sub>24</sub>   | 168 | 15.3 | 70642  |
| 59 | 13.33 | 41 | 9-Octadecenal                            | C <sub>18</sub> H <sub>34</sub> O | 266 | 5.16 | 35819  |
| 60 | 13.44 | 41 | 1-Tridecene                              | C <sub>13</sub> H <sub>26</sub>   | 182 | 7.48 | 107768 |
| 61 | 13.56 | 57 | Tridecane                                | C <sub>13</sub> H <sub>28</sub>   | 184 | 38.8 | 114282 |
| 62 | 13.61 | 55 | 5-Tridecene, (E)-                        | C <sub>13</sub> H <sub>26</sub>   | 182 | 7.68 | 142619 |
| 63 | 14.28 | 41 | 1-Nonadecanol                            | C19H40O                           | 284 | 6.59 | 13666  |
| 64 | 14.71 | 41 | Z-10-Pentadecen-1-ol                     | C <sub>15</sub> H <sub>30</sub> O | 226 | 7.23 | 245485 |
| 65 | 14.82 | 41 | 3-Tetradecene, (Z)-                      | $C_{14}H_{28}$                    | 196 | 4.41 | 62806  |
| 66 | 14.93 | 85 | Tetradecane                              | C14H30                            | 198 | 35.1 | 113925 |
| 67 | 14.97 | 55 | 3-Tetradecene, (E)-                      | $C_{14}H_{28}$                    | 196 | 5.61 | 139981 |
| 68 | 15.12 | 55 | 7-Tetradecene                            | $C_{14}H_{28}$                    | 196 | 6.70 | 70643  |
| 69 | 16.02 | 41 | 4-Tridecene, (Z)-                        | C <sub>13</sub> H <sub>26</sub>   | 182 | 7.93 | 142617 |
| 70 | 16.12 | 41 | 1-Pentadecene                            | C <sub>15</sub> H <sub>30</sub>   | 210 | 5.59 | 69726  |
| 71 | 16.23 | 57 | Pentadecane                              | C <sub>15</sub> H <sub>32</sub>   | 212 | 22.5 | 107761 |
| 72 | 16.41 | 41 | E-2-Hexadecacen-1-ol                     | C <sub>16</sub> H <sub>32</sub> O | 240 | 5.01 | 131101 |
| 73 | 16.99 | 41 | 1-Nonadecanol                            | C19H40O                           | 284 | 11.9 | 13666  |
| 74 | 17.35 | 41 | 1-Hexadecene                             | C <sub>16</sub> H <sub>32</sub>   | 224 | 5.81 | 118882 |
| 75 | 17.45 | 71 | Hexadecane                               | C <sub>16</sub> H <sub>34</sub>   | 226 | 36.6 | 114191 |
| 76 | 17.63 | 41 | 2-Methyl-E-7-hexadecene                  | C17H34                            | 238 | 3.91 | 130870 |
| 77 | 18.18 | 41 | 1-Eicosanol                              | C <sub>20</sub> H <sub>42</sub> O | 298 | 6.05 | 23222  |
| 78 | 18.43 | 41 | E-2-Octadecadecen-1-ol                   | C <sub>18</sub> H <sub>36</sub> O | 268 | 9.95 | 131102 |
| 79 | 18.51 | 41 | 1-Nonadecene                             | C19H38                            | 266 | 5.70 | 113626 |
| 80 | 18.60 | 71 | Heptadecane                              | C <sub>17</sub> H <sub>36</sub>   | 240 | 29.8 | 107308 |
| 81 | 18.78 | 41 | 2-Methyl-E-7-hexadecene                  | C17H34                            | 238 | 9.78 | 130870 |
| 82 | 19.62 | 41 | 1-Docosene                               | C <sub>22</sub> H44               | 308 | 5.60 | 113878 |
| 83 | 19.70 | 57 | Octadecane                               | C18H38                            | 254 | 19.9 | 57273  |
| 84 | 20.67 | 41 | 9-Nonadecene                             | C19H38                            | 266 | 10.1 | 113627 |
| 85 | 20.75 | 71 | Eicosane                                 | C <sub>20</sub> H <sub>42</sub>   | 282 | 14.0 | 290513 |
| 86 | 21.67 | 41 | 1-Docosene                               | C <sub>22</sub> H <sub>44</sub>   | 308 | 7.16 | 113878 |
| 87 | 21.74 | 57 | Eicosane                                 | C <sub>20</sub> H <sub>42</sub>   | 282 | 25.4 | 290513 |
| 88 | 21.88 | 55 | 1-Eicosene                               | C <sub>20</sub> H <sub>40</sub>   | 280 | 10.7 | 13488  |
| 89 | 22.63 | 43 | 10-Heneicosene (c,t)                     | C <sub>21</sub> H <sub>42</sub>   | 294 | 8.05 | 113073 |

| 90  | 22.70 | 43 | Heneicosane    | C <sub>21</sub> H <sub>44</sub>   | 296 | 26.9 | 107569 |
|-----|-------|----|----------------|-----------------------------------|-----|------|--------|
| 91  | 22.86 | 55 | 1-Heneicosanol | C <sub>21</sub> H <sub>44</sub> O | 312 | 7.56 | 233005 |
| 92  | 23.55 | 43 | 1-Docosene     | C <sub>22</sub> H <sub>44</sub>   | 308 | 9.68 | 113878 |
| 93  | 23.61 | 71 | Heneicosane    | C <sub>21</sub> H <sub>44</sub>   | 296 | 12.5 | 107569 |
| 94  | 23.79 | 55 | 1-Docosanol    | C <sub>22</sub> H <sub>46</sub> O | 326 | 12.7 | 23377  |
| 95  | 24.49 | 43 | Heneicosane    | C <sub>21</sub> H <sub>44</sub>   | 296 | 11.0 | 107569 |
| 96  | 25.35 | 57 | Tetracosane    | C <sub>24</sub> H <sub>50</sub>   | 338 | 9.46 | 248196 |
| 97  | 26.18 | 57 | Heptacosane    | C <sub>27</sub> H <sub>56</sub>   | 380 | 7.68 | 150574 |
| 98  | 26.98 | 57 | Octacosane     | C <sub>28</sub> H <sub>58</sub>   | 394 | 10.2 | 134306 |
| 99  | 27.78 | 57 | Octacosane     | C <sub>28</sub> H <sub>58</sub>   | 394 | 12.7 | 134306 |
| 100 | 28.57 | 57 | Heptacosane    | C <sub>27</sub> H <sub>56</sub>   | 380 | 20.1 | 79427  |

GC/MS analysis of solid standard LDPE plastic to fuel (Fig.7 and table 10) in accordance with retention time and trace mass indicate various types of compound are present. High intensity compounds are preferred in the analysis. An investigated carbon range in the analyzed plastic is  $C_3$  to  $C_{28}$  because large carbon chains are breaking down into small chain resulting in lower carbon range. Sometimes noticed that for high peak intensity compound probability factor is low percentage, where as in low peak intensity compound probability factor is high percentage. Most of the peaks are considered in the analysis and as per their retention time and trace mass maximum peaks are mentioned, in accordance to retention time 1.57 and trace mass 41, derived compound is Propane  $(C_3H_6)$  with probability 49.2%, retention time 1.65 and trace mass 43, compound is Isobutane, (C4H10) with probability 52.8%, retention time 1.69 and trace mass 41, compound is 1-Propene, 2-Methyl- ( $C_4H_8$ ) with probability 34.3%, retention time 1.70 and trace mass 43, compound is Butane ( $C_4H_{10}$ ) with probability factor 69.6%, retention time 2.00 and trace mass 43, compound is Pentane,  $(C_5H_{12})$  with probability 86.1%, retention time 2.11, trace mass 55, compound is Cyclopropane, 1,2-dimethyl-, cis-  $(C_5H_{10})$  with probability 24.4%, retention time 2.16 and trace mass 39, compound is 1,3-Pentadiene, 2-ethyl-,  $(C_5H_8)$  with probability 19.4%, retention time 3.01 and trace mass 56, compound is Cyclopentane, methyl-,  $(C_6H_{12})$  with probability 63%, retention time 3.74 and trace mass 41, compound is 1-Heptene ( $C_7H_{14}$ ) with probability 16.4%, retention time 3.86 and trace mass 43, compound is Heptane ( $C_7H_{16}$ ) with probability 69.0%, retention time 4.09 and trace mass 81, compound is 1,2-Hexadiene, 5-methyl-  $(C_7H_{12})$  with probability 7.97%, retention time 4.75 and trace mass 67, compound is 1-Ethylcyclopentene ( $C_7H_{12}$ ) with probability 38.8%, retention time 5.97 and trace mass 67, compound is 1-Methyl-2-methylenecyclohexane ( $C_8H_{14}$ ) with probability 29.8%, retention time 6.72 and trace mass 81, compound is Cyclohexene, 1,2-dimethyl- ( $C_8H_{14}$ ) with probability 8.39% etc. Also in the middle of the analysis index retention time 6.72 and trace mass 81, compound is Cyclohexene, 1,2-dimethyl- ( $C_8H_{14}$ ) with probability 8.39%, retention time 7.61 and trace mass 67, compound is Ethylidenecycloheptane ( $C_9H_{16}$ ) with probability 19.2%, retention time 7.83 and trace mass 55, compound is Cyclopentane, butyl- ( $C_9H_{18}$ ) with probability 12.5%, retention time 8.99 and trace mass 55, compound is 2-Decene,  $(Z) - (C_{10}H_{20})$  with probability 13.8% etc. As well in the middle phase of the analysis index retention time 9.57 and trace mass 55, compound is 2,4-Undecadien-1-ol (C11H20O) with probability 8.58%, retention time 10.76 and trace mass 41, compound is 2-Pentadecyn-1-ol ( $C_{15}H_{28}O$ ) with probability 20.10%, retention time 12.11 and trace mass 57, compound is Dodecane ( $C_{12}H_{26}$ ) with the probability 34.2% accordingly. Also at the end phase of the analysis retention time 13.61 and trace mass 55, Compound is 5-Tridecene, (E)- ( $C_{13}H_{26}$ ) with probability 9.82%, retention time 39.58 and trace mass 57, compound is Heneicosane ( $C_{21}H_{44}$ ) with probability 7.68%, retention time 14.28 and trace mass 41, compound is Nonadecanol,  $(C_{19}H_{40}O)$  with probability 6.59%, retention time 17.45 and trace mass 71, compound is Hexadecane ( $C_{16}H_{34}$ ) with probability 36.6%, retention time 19.62 and trace mass 41, compound is 1-Docosene ( $C_{22}H_{44}$ ) with probability 5.60%, and retention time 27.78 and trace mass 57, compound is Octacosane  $(C_{28}H_{58})$  with probability 12.7% and ultimately retention time 28.57 and trace mass 57, compound is Heptacosane (C<sub>27</sub>H<sub>56</sub>) with probability 20.1% as well. In the analysis appearing that in several oxygen compounds are produced because in the reactor during reaction oxygen induced from steam and water. Also noticed in the standard LDPE plastics including single and double bond compound as well as aliphatic and aromatic derivatives compounds are also available.



Figure 8: FT-IR spectrum of LDPE waste plastic to fuel

| Table 11: FT-IR | spectrum of LDPE | waste plastic | to fuel | functional | group | ) |
|-----------------|------------------|---------------|---------|------------|-------|---|
|-----------------|------------------|---------------|---------|------------|-------|---|

| Number of | Band Number         | Functional        | Number of | Band Number                 | Functional          |
|-----------|---------------------|-------------------|-----------|-----------------------------|---------------------|
| Peak      | (cm <sup>-1</sup> ) | Group Name        | Peak      | ( <b>cm</b> <sup>-1</sup> ) | Group Name          |
| 1         | 3618.53             | Free OH           | 13        | 1302.59                     |                     |
| 2         | 3078.00             | H Bonded NH       | 14        | 1137.52                     |                     |
| 3         | 2925.00             | C-CH <sub>3</sub> | 15        | 1074.91                     |                     |
| 4         | 2731.20             | C-CH <sub>3</sub> | 16        | 992.06                      | -CH=CH <sub>2</sub> |
| 5         | 2671.28             | C-CH <sub>3</sub> | 17        | 965.00                      | -CH=CH-(trans)      |
| 6         | 2332.37             |                   | 18        | 909.42                      | -CH=CH <sub>2</sub> |
| 7         | 2027.66             |                   | 19        | 887.93                      | $C=CH_2$            |
| 8         | 1821.59             | Non-Conjugated    | 20        | 768.10                      |                     |
| 9         | 1722.64             | Non-Conjugated    | 21        | 721.95                      | -CH=CH-(cis)        |

Copyright © 2012 www.scitecpub.com

| 10 | 1641.69 | Conjugated      | 22 | 674.32 | -CH=CH-(cis) |
|----|---------|-----------------|----|--------|--------------|
| 11 | 1460.01 | CH <sub>3</sub> | 23 | 634.23 |              |
| 12 | 1377.90 | CH <sub>3</sub> | 24 | 552.74 |              |

FT-IR analysis of LDPE raw waste plastic to fuel (fig. 8 and table 11) according to their wave number and spectrum band following types of functional groups are appeared in the analysis. In the spectrum field we noticed that higher wave number are emerged in the initial phase and middle index of the spectrum and in higher wave number small and bulky both functional groups are available and in low wave number double bond and single bond functional groups are available such as methane group, cis and trans alkene etc. Hereafter wave number 3618.53 cm <sup>1</sup>, functional group is Free OH, wave number 3078.00 cm<sup>-1</sup>, functional group is H Bonded NH, wave number 2925.00 cm<sup>-1</sup>, functional group is C-CH<sub>3</sub>, 2731.20 cm<sup>-1</sup> functional group is C-CH<sub>3</sub> wave number 1821.59 cm<sup>-1</sup>, functional group is Non-Conjugated, wave number 1722.64 cm<sup>-1</sup>, functional group is Non-Conjugated, wave number 1641.69 cm<sup>-1</sup>, functional group is Conjugated, wave number 1460.01 cm<sup>-1</sup> and 1377.90 cm<sup>-1</sup> functional group is CH<sub>3</sub>, wave number 992.06 cm<sup>-1</sup> functional group is -CH=CH<sub>2</sub>, wave number 965.00 cm<sup>-1</sup>, functional group is -CH=CH-(trans), wave number 887.93, functional group is C=CH<sub>2</sub>, wave number 721.95 cm<sup>-1</sup>, functional group is -CH=CH-(cis) and ultimately wave number 674.32 cm<sup>-1</sup>, functional group is -CH=CH-(cis) as well. For several wave number energy values are calculated, using formula is E=hv, Where h=Planks Constant, h = $6.626 \times 10^{-34}$  J, v= Frequency in Hertz (sec<sup>-1</sup>), Where  $v=c/\lambda$ , c=Speed of light, where, c=3x10<sup>10</sup> m/s, W=1/\lambda, where  $\lambda$  is wave length and W is wave number in  $cm^{-1}$ . Therefore the equation E=hv, can substitute by the following equation, E=hcW. According to their wave number several energy values are calculated such as for 2925.00 (cm<sup>-1</sup>) calculated energy,  $E=5.79 \times 10^{-20}$  J, wave number 2731.20 (cm<sup>-1</sup>), calculated energy,  $E=5.42 \times 10^{-20}$  J, wave number 1641.69 (cm<sup>-1</sup>), calculated energy, E=3.26x10<sup>-20</sup> J, wave number 1460.01 (cm<sup>-1</sup>), calculated energy, E=2.90x10<sup>-20</sup> J, wave number 1377.90 (cm<sup>-1</sup>), calculated energy,  $E=2.73 \times 10^{-20}$  J, wave number 721.95 (cm<sup>-1</sup>), calculated energy,  $E=1.44 \times 10^{-20}$  J, Similarly, wave number 674.32 (cm<sup>-1</sup>) energy,  $E = 1.33 \times 10^{-20}$  J respectively.

| Table 12: FT-IR spectrum of LDP | E standard plastic to fuel | functional group |
|---------------------------------|----------------------------|------------------|
|---------------------------------|----------------------------|------------------|

| Number of<br>Peak | Band Number<br>(cm <sup>-1</sup> ) | Functional<br>Group Name | Number of<br>Peak | Band Number<br>(cm <sup>-1</sup> ) | Functional<br>Group Name |
|-------------------|------------------------------------|--------------------------|-------------------|------------------------------------|--------------------------|
| 1                 | 3617.44                            | Free OH                  | 13                | 1302.51                            |                          |
| 2                 | 3078.01                            | H Bonded NH              | 14                | 1137.62                            |                          |
| 3                 | 2924.69                            | C-CH <sub>3</sub>        | 15                | 1075.15                            |                          |
| 4                 | 2731.20                            | C-CH <sub>3</sub>        | 16                | 992.04                             | -CH=CH <sub>2</sub>      |
| 5                 | 2671.06                            | C-CH <sub>3</sub>        | 17                | 964.98                             | -CH=CH-(trans)           |
| 6                 | 2331.20                            |                          | 18                | 909.44                             | -CH=CH <sub>2</sub>      |
| 7                 | 2027.67                            |                          | 19                | 887.85                             | $C=CH_2$                 |
| 8                 | 1821.60                            | Non-Conjugated           | 20                | 768.10                             |                          |
| 9                 | 1722.59                            | Non-Conjugated           | 21                | 721.98                             | -CH=CH-(cis)             |
| 10                | 1641.71                            | Conjugated               | 22                | 674.34                             | -CH=CH-(cis)             |
| 11                | 1456.01                            | CH <sub>3</sub>          | 23                | 634.22                             |                          |
| 12                | 1377.88                            | CH <sub>3</sub>          | 24                | 552.93                             |                          |



Figure 9: FT-IR spectrum of LDPE standard plastic to fuel

FTIR analysis of LDPE raw standard plastic to fuel (**fig. 9 and table12**) according to their wave number and spectrum band following types of functional groups are appeared in the analysis. In the spectrum field we noticed that higher wave number are emerged in the initial phase and middle index of the spectrum and in higher wave number small and bulky both functional groups are available and in low wave number double bond and single bond functional groups are available such as methane group, cis and trans alkene etc. Hereafter wave number 3617.44 cm<sup>-1</sup>, functional group is Free OH, wave number 3078.01 cm<sup>-1</sup>, functional group is H Bonded NH, wave number 2924.69 cm<sup>-1</sup>, functional group is C-CH<sub>3</sub>, 2731.20 cm<sup>-1</sup> functional group is C-CH<sub>3</sub>, wave number 1821.60 cm<sup>-1</sup>, functional group is Non-Conjugated, wave number 1722.59 cm<sup>-1</sup>, functional group is Non-Conjugated, wave number 1456.01 cm<sup>-1</sup> and 1377.88 cm<sup>-1</sup> functional group is CH=CH-(trans), wave number 887.85, functional group is C=CH<sub>2</sub>, wave number 721.98 cm<sup>-1</sup>, functional group is -CH=CH-(cis) and ultimately wave number 674.34 cm<sup>-1</sup>, functional group is -CH=CH-(cis) as well. For several wave number energy values are calculated, using formula is E=hv, Where h=Planks Constant, h =6.626x10<sup>-34</sup> J, v= Frequency in Hertz (sec<sup>-1</sup>), Where v=c/ $\lambda$ , c=Speed of light, where, c=3x10<sup>10</sup> m/s, W=1/ $\lambda$ , where  $\lambda$  is wave length and W is wave number in cm<sup>-1</sup>. Therefore the equation E=hv, can substitute by the following equation, E=hcW.

According to their wave number several energy values are calculated such as for 2924.69 (cm<sup>-1</sup>) calculated energy,  $E=5.79 \times 10^{-20}$  J, wave number 2731.20 (cm<sup>-1</sup>), calculated energy,  $E=5.42 \times 10^{-20}$  J, wave number 1641.71 (cm<sup>-1</sup>), calculated energy,  $E=3.26 \times 10^{-20}$  J, wave number 1456.01 (cm<sup>-1</sup>), calculated energy,  $E=2.90 \times 10^{-20}$  J, wave number 1377.88 (cm<sup>-1</sup>), calculated energy,  $E=2.73 \times 10^{-20}$  J, wave number 721.98 (cm<sup>-1</sup>), calculated energy,  $E=1.44 \times 10^{-20}$  J, Similarly, wave number 674.34 (cm<sup>-1</sup>) energy,  $E=1.33 \times 10^{-20}$  J respectively.

| Table 13: LDPE waste plas | stic to fuel ASTM test result |
|---------------------------|-------------------------------|
|---------------------------|-------------------------------|

| Method Name    | Test Name                                               | Results                | Units          |
|----------------|---------------------------------------------------------|------------------------|----------------|
| ASTM D240      | Gross Heat of Combustion                                | 18681                  | BTU/lb         |
| ASTM D240      | Gross Heat of Combustion                                | 123631                 | BTU/gal        |
|                | (Calculated)                                            |                        | -              |
| ASTM D4052     | API Gravity @ 60°F                                      | 46.5                   | °API           |
| ASTM D86-07b   | IBP Recovery                                            | 95.6                   | °C             |
| ASTM D86-07b   | 5% Recovery                                             | 120.0                  | °C             |
| ASTM D86-07b   | 10% Recovery                                            | 136.7                  | °C             |
| ASTM D86-07b   | 20% Recovery                                            | 164.4                  | °C             |
| ASTM D86-07b   | 30% Recovery                                            | 193.3                  | °C             |
| ASTM D86-07b   | 40% Recovery                                            | 222.2                  | °C             |
| ASTM D86-07b   | 50% Recovery                                            | 248.9                  | °C             |
| ASTM D86-07b   | 60% Recovery                                            | 262.2                  | °C             |
| ASTM D86-07b   | 70% Recovery                                            | 288.9                  | °C             |
| ASTM D86-07b   | 80% Recovery                                            | 365.6                  | °C             |
| ASTM D86-07b   | 90% Recovery                                            | -                      | °C             |
| ASTM D86-07b   | 95% Recovery                                            | _                      | °Č             |
| ASTM D86-07b   | FBP Recovery                                            | 371.1                  | °C             |
| ASTM D86-07b   | Recovery                                                | 82.0                   | Vol%           |
| ASTM D86-07b   | Residue                                                 | 18.0                   | Vol%           |
| ASTM D2500     | Cloud point                                             | -20.6                  | °C             |
| ASTM D2500     | Cloud Point                                             | -5.1                   | °E             |
| ASTM D2500     | Pour point                                              | -3.1                   | °C             |
| ASTM D97       | Pour point                                              | -24                    | о <u>г</u>     |
| ASTM D2286     | Freezing Point                                          | -11.2                  | °C             |
| ASTM D2380     | Freezing Point                                          | 10.0<br>61.0           | °E             |
| ASTM D2380     | Fleezing Point                                          | 01.0                   | Г<br>°С        |
| ASTM D2624     | Temperature<br>Electrical Canductivity                  | 24.0                   | -C<br>         |
| ASTM D2624     | Electrical Conductivity                                 | 1.0                    | pS/M           |
| ASIM D5453     | Sultur                                                  | <1.0                   | mg/kg          |
| AST M D1500    | ASIM Color                                              | <5.0                   |                |
| ASTM D4176     | Appearance: Clean and Bright                            | -                      |                |
| ASTM D4176     | Free Water Content/Particles                            | No water               | mg/kg          |
| ASTM D4176     | Haze Rating                                             | 6.0                    |                |
| ASTM D4176     | Special Observation                                     | Darker than usual      |                |
| ASTM D4737     | Cetane Index (Procedure A)                              | 63.2                   |                |
| ASTM D5708_MOD | Vanadium                                                | <1.0                   | ppm            |
| ASTM D5708_MOD | Nickel                                                  | <1.0                   | ppm            |
| ASTM D5708_MOD | Iron                                                    | <1.0                   | ppm, or, mg/Kg |
| ASTM D482      | Ash                                                     | < 0.001                | Wt%            |
| ASTM D93       | Procedure Used                                          | А                      |                |
| ASTM D93       | Corrected Flash Point                                   | Below room temperature | °C             |
| ASTM D4530     | Average Micro Method Carbon<br>Residue 10% distillation | 0.4                    | Wt%            |
| ASTM D664      | Procedure Used                                          | А                      |                |

#### Moinuddin Sarker

| ASTM D664  | Acid Number             | 0.10    | mgKOH/gm |
|------------|-------------------------|---------|----------|
| ASTM D130  | Copper Corrosion @ 50°C | 1a      |          |
|            | (122°F)/3 hrs.          |         |          |
| ASTM D2709 | Sediment and Water      | < 0.005 | Vol%     |
| ASTM D5291 | Carbon Content          | 86.25   | Wt%      |
| ASTM D5291 | Hydrogen Content        | 13.69   | Wt%      |
| ASTM D5291 | Nitrogen Content        | < 0.75  | Wt%      |

Low density polyethylene (LDPE) waste plastic to produced fuel was analysis (table 13) by 3rd party Intertek laboratory New Jersey, USA, and all test was performed ASTM test followed such as ASTM D240 Gross Heat of Combustion :18681 BTU/lb, ASTM D240 Gross Heat of Combustion, (Calculated): 123631 BTU/gal, ASTM D4052 API Gravity @ 60°F: 46.5 °API, ASTM D86-07b IBP Recovery: 95.6 °C, ASTM D86-07b 5% Recovery: 120.0 °C, ASTM D86-07b 10% Recovery: 136.7 °C, ASTM D86-07b 20% Recovery: 164.4 °C, ASTM D86-07b 30% Recovery: 193.3 °C, ASTM D86-07b 40% Recovery: 222.2 °C, ASTM D86-07b 50% Recovery: 248.9 °C, ASTM D86-07b 60% Recovery: 262.2 °C, ASTM D86-07b 70% Recovery: 288.9 °C, ASTM D86-07b 80% Recovery: 365.6 °C, ASTM D86-07b 90% Recovery: °C, ASTM D86-07b 95% Recovery: °C, ASTM D86-07b FBP Recovery: 371.1 °C, ASTM D86-07b Recovery: 82.0 Vol%, ASTM D86-07b Residue: 18.0 Vol%, ASTM D2500 Cloud point: -20.6 °C, ASTM D2500 Cloud Point : -5.1 °F, ASTM D97 Pour point: -24 °C, ASTM D97 Pour point: -11.2 °F, ASTM D2386 Freezing Point : 16.0 °C, ASTM D2386 Freezing Point: 61.0 °F, ASTM D2624 Temperature: 24.0 °C, ASTM D2624 Electrical Conductivity: 1.0 pS/M, ASTM D5453 Sulfur: <1.0 mg/kg, ASTM D1500 ASTM Color: <5.0, ASTM D4176 Appearance: Clean and Bright, ASTM D4176 Free Water Content/Particles: No water mg/kg, ASTM D4176 Haze Rating : 6.0, ASTM D4176 Special Observation: Darker than usual, ASTM D4737 Cetane Index (Procedure A): 63.2, ASTM D5708 MOD Vanadium: <1.0 ppm, ASTM D5708 MOD Nickel: <1.0 ppm, ASTM D5708 MOD Iron : <1.0 ppm, or, mg/Kg, ASTM D482 Ash: <0.001 Wt%, ASTM D93 Procedure Used A ASTM D93 Corrected Flash Point : Below room temperature °C, ASTM D4530 Average Micro Method Carbon Residue 10% distillation: 0.4 Wt%, ASTM D664 Procedure Used A ASTM D664 Acid Number: 0.10 mgKOH/gm, ASTM D130 Copper Corrosion @ 50°C (122°F)/3 hrs.: 1a, ASTM D2709 Sediment and Water: <0.005 Vol%, ASTM D5291 Carbon Content: 86.25 Wt%, ASTM D5291 Hydrogen Content : 13.69 Wt%, ASTM D5291 Nitrogen Content: <0.75 Wt%.

| Method Name  | Test Name                | Results  | Units   |
|--------------|--------------------------|----------|---------|
|              |                          | incourts |         |
| ASTM D240    | Gross Heat of Combustion | 19551    | BTU/lb  |
| ASTM D240    | Gross Heat of Combustion | 128606   | BTU/gal |
|              | (Calculated)             |          |         |
| ASTM D4052   | API Gravity @ 60°F       | 47.6     | °API    |
| ASTM D86-07b | IBP Recovery             | 86.7     | °C      |
| ASTM D86-07b | 5% Recovery              | 104.4    | °C      |
| ASTM D86-07b | 10% Recovery             | 120.0    | °C      |
| ASTM D86-07b | 20% Recovery             | 151.1    | °C      |
| ASTM D86-07b | 30% Recovery             | 188.9    | °C      |
| ASTM D86-07b | 40% Recovery             | 223.3    | °C      |
| ASTM D86-07b | 50% Recovery             | 246.7    | °C      |
| ASTM D86-07b | 60% Recovery             | 271.1    | °C      |
| ASTM D86-07b | 70% Recovery             | 297.8    | °C      |
| ASTM D86-07b | 80% Recovery             | -        | °C      |
| ASTM D86-07b | 90% Recovery             | -        | °C      |
| ASTM D86-07b | 95% Recovery             | -        | °C      |

| ASTM D86-07b   | FBP Recovery 364.4           |                        | °C            |
|----------------|------------------------------|------------------------|---------------|
| ASTM D86-07b   | Recovery                     | Recovery 75.0          |               |
| ASTM D86-07b   | Residue                      | 25.0                   | Vol%          |
| ASTM D2500     | Cloud point                  | -16.6                  | °C            |
| ASTM D2500     | Cloud Point                  | 2.1                    | °F            |
| ASTM D97       | Pour point                   | -18.0                  | °C            |
| ASTM D97       | Pour point                   | -0.4                   | °F            |
| ASTM D2386     | Freezing Point               | 13.0                   | °C            |
| ASTM D2386     | Freezing Point               | 55.0                   | °F            |
| ASTM D2624     | Temperature                  | 24.0                   | °C            |
| ASTM D2624     | Electrical Conductivity      | <1                     | pS/M          |
| ASTM D5453     | Sulfur                       | 1.0                    | mg/kg         |
| ASTM D1500     | ASTM Color                   | <4.0                   |               |
| ASTM D4176     | Appearance: Clean and Bright | Fail                   |               |
| ASTM D4176     | Free Water Content/Particles |                        | mg/kg         |
| ASTM D4176     | Haze Rating                  |                        |               |
| ASTM D4176     | Special Observation          | Darker than usual      |               |
| ASTM D4737     | Cetane Index                 | 64.7                   |               |
|                | (Procedure A)                |                        |               |
| ASTM D5708_MOD | Vanadium                     | <1.0                   | ppm           |
| ASTM D5708 MOD | Nickel                       | <1.0                   | ppm           |
| ASTM D5708 MOD | Iron                         | <1.0                   | ppm OR, mg/Kg |
| ASTM D482      | Ash                          | <1.0                   | Wt%           |
| ASTM D93       | Procedure Used               | А                      |               |
| ASTM D93       | Corrected Flash Point        | Below room temperature | °C            |
| ASTM D4530     | Average Micro Method Carbon  | 0.2                    | Wt%           |
|                | Residue 10% distillation     |                        |               |
| ASTM D664      | Procedure Used               | А                      |               |
| ASTM D664      | Acid Number                  | < 0.10                 | mgKOH/gm      |
| ASTM D130      | Copper Corrosion @ 50°C      | 1a                     |               |
|                | (122°F)/3 hrs.               |                        |               |
| ASTM D2709     | Sediment and Water           | < 0.005                | Vol%          |
| ASTM D5291     | Carbon Content               | 86.45                  | Wt%           |
| ASTM D5291     | Hydrogen Content             | 13.51                  | Wt%           |
| ASTM D5291     | Nitrogen Content             | < 0.75                 | Wt%           |

LDPE standard plastic to fuel (table 14) test was performed from 3<sup>rd</sup> party Intertek laboratory in New Jersey, USA and all ASTM test method followed such as ASTM D240 Gross Heat of Combustion: 19551 BTU/lb, ASTM D240 Gross Heat of Combustion (Calculated): 128606 BTU/gal, ASTM D4052 API Gravity @ 60°F: 47.6 °API, ASTM D86-07b IBP Recovery: 86.7 °C, ASTM D86-07b 5% Recovery: 104.4 °C, ASTM D86-07b 10% Recovery: 120.0 °C, ASTM D86-07b 20% Recovery :151.1 °C, ASTM D86-07b 30% Recovery: 188.9 °C, ASTM D86-07b 40% Recovery: 223.3 °C, ASTM D86-07b 50% Recovery: 246.7 °C, ASTM D86-07b 60% Recovery: 271.1 °C, ASTM D86-07b 70% Recovery: 297.8 °C, ASTM D86-07b 80% Recovery: °C, ASTM D86-07b 90% Recovery: °C, ASTM D86-07b 95% Recovery: °C, ASTM D86-07b FBP Recovery: 364.4 °C, ASTM D86-07b Recovery: 75.0 Vol%, ASTM D86-07b Residue: 25.0 Vol%, ASTM D2500b Cloud point: -16.6 °C, ASTM D2500 Cloud Point: 2.1°F, ASTM D97 Pour point: -18.0 °C, ASTM D97 Pour point: -0.4 °F, ASTM D2386 Freezing Point: 13.0 °C, ASTM D2386 Freezing Point: 55.0 °F, ASTM D2624 Temperature: 24.0 °C, ASTM D2624 Electrical Conductivity : <1 pS/M, ASTM D5453 Sulfur: 1.0mg/kg, ASTM D1500 ASTM Color: <4.0, ASTM D4176 Appearance Clean and Bright: Fail, ASTM D4176 Free Water Content/Particles: 0 mg/kg, ASTM D4176Haze Rating: nil, ASTM D4176 Special Observation: Darker than usual, ASTM D4737 Cetane Index (Procedure A): 64.7, ASTM D5708 MOD Vanadium: <1.0 ppm, ASTM D5708 MOD Nickel: <1.0 ppm, ASTM D5708 MOD Iron: <1.0 ppm OR, mg/Kg, ASTM D482 Ash: <1.0 Wt%, ASTM D93 Procedure Used \_A ASTM D93 Corrected Flash Point: Below room temperature °C, ASTM D4530 Average Micro Method Carbon Residue 10% distillation: 0.2 Wt%, ASTM D664 Procedure Used \_A ASTM D664 Acid Number: <0.10 mgKOH/gm, ASTM D130 Copper Corrosion @ 50°C (122°F)/3 hrs.:1a, ASTM D2709 Sediment and Water: <0.005 Vol%, ASTM D5291 Carbon Content: 86.45Wt%, ASTM D5291 Hydrogen Content:13.51 Wt%, ASTM D5291 Nitrogen Content : <0.75 Wt%.

#### 3.4. Solid Residue Analysis

Table 15: LDPE waste plastic and LDPE standard plastic to residue analysis result by ICP

| Test Method | Trace Metal | LDPE Waste Plastic to | LDPE Standard Plastic to |
|-------------|-------------|-----------------------|--------------------------|
| Name        | Name        | Residue (ppm)         | Residue (ppm)            |
|             | 0.1         | -1.0                  | -1.0                     |
| ASIM D1976  | Silver      | <1.0                  | <1.0                     |
|             | Aluminum    | /806                  | 799.9                    |
|             | Arsenic     | 23.6                  | <1.0                     |
|             | Boron       | 24.3                  | 14.9                     |
|             | Barium      | 11.4                  | 74.8                     |
|             | Beryllium   | <1.0                  | <1.0                     |
|             | Calcium     | 1041                  | 2879                     |
|             | Cadmium     | <1.0                  | <1.0                     |
|             | Chromium    | 29.2                  | 51.0                     |
|             | Copper      | 82.4                  | 38.7                     |
|             | Iron        | 4280                  | 2112                     |
|             | Potassium   | 106.7                 | <1.0                     |
|             | Lithium     | <1.0                  | <1.0                     |
|             | Magnesium   | 221.6                 | 125.0                    |
|             | Manganese   | 17.8                  | 24.4                     |
|             | Sodium      | 1201                  | 152.9                    |
|             | Nickel      | 148.7                 | 246.7                    |
|             | Lead        | 10.8                  | <1.0                     |
|             | Antimony    | <1.0                  | <1.0                     |
|             | Selenium    | <1.0                  | <1.0                     |
|             | Silicon     | 77.0                  | 33.8                     |
|             | Tin         | 274.3                 | 152.7                    |
|             | Titanium    | 191.1                 | 736.5                    |
|             | Vanadium    | 17.0                  | <1.0                     |
|             | Zinc        | 1617                  | 84.5                     |

LDPE waste plastic and LDPE standard plastic to fuel production period some residue was left over that residue was combination of metal and metal was analysis by ICP and ASTM method was ASTM D1976 and **table 15** showed metal content result for LDPE waste plastic to residue such as Silver <1.0 ppm, Aluminum 7806 ppm, Arsenic 23.6 ppm, Boron 24.3ppm, Barium 11.4 ppm, Beryllium <1.0 ppm, Calcium 1041 ppm, Cadmium <1.0 ppm, Chromium 29.2 ppm, Copper 82.4 ppm, Iron 4280 ppm, Potassium 106.7 ppm, Lithium <1.0 ppm, Magnesium 221.6 ppm, Manganese 17.8 ppm, Sodium 1201 ppm, Nickel 148.7 ppm, Lead 10.8 ppm, Antimony <1.0 ppm, Selenium <1.0 ppm, Silicon 77.0 ppm, Tin 274.3 ppm, Titanium 191.1 ppm, Vanadium 17.0 ppm, Zinc 1617 ppm level was present into LDPE waste plastic to residue. On the other hand pure standard LDPE plastic to residue also metal content present such as Silver <1.0 ppm, Aluminum 799.9 ppm, Arsenic <1.0 ppm, Copper 38.7 ppm, Iron 2112 ppm, Potassium <1.0 ppm, Lithium <1.0 ppm, Calcium 2879 ppm, Cadmium <1.0 ppm, Manganese 24.4 ppm, Sodium 152.9 ppm, Nickel 246.7 ppm, Lead <1.0 ppm, Antimony <1.0 ppm, Silicon 33.8 ppm, Tin 152.7

ppm, Titanium736.5 ppm, Vanadium <1.0 ppm, Zinc 84.5 ppm level present respectively. LDPE waste plastic and LDPE standard plastic metal content was vary because LDPE waste plastic was come from consumer level and LDPE plastic was made for consumer and it was made with different types of additives and additives percentage is almost 3-4% and those additives come out as solid black residue. On the other hand pure standard LDPE plastic made for analysis or made for plastic manufacturing company making plastic with adding dye or chemical for that reason additives percentage is less then manufactured consumer plastic. During waste plastic to fuel production or standard plastic to fuel production metal content was not come out that much what ever come it was negligible because all metal content melting point temperature more than higher from waste plastic to fuel production temperature. Metal content was help to break down long chain hydrocarbon to short chain hydrocarbon because metal content react as catalyst because all types of catalyst are made by metal.

| Test Method<br>Name | Plastics Name                       | Carbon (C) % | Hydrogen (H) % | Nitrogen (N)% |
|---------------------|-------------------------------------|--------------|----------------|---------------|
| ASTM D5291.a        | LDPE Waste Plastic to<br>Residue    | 81.81        | 2.15           | < 0.30        |
|                     | LDPE Standard Plastic to<br>Residue | 68.72        | 2.15           | < 0.30        |

Table 16: LDPE waste plastic and LDPE standard plastic to residue C, H and N % by EA-2400

LDPE waste plastic and LDPE standard plastic to residue was analysis by Elemental Analyzer 2400 in CHN mode with followed ASTM method ASTM D529\_a. In **table 16** analysis result indicate that LDPE waste plastic to residue carbon percentage is 81.81%, hydrogen percentage is 2.15% and nitrogen percentage is less then <0.30%. On the other hand standard pure LDPE plastic to residue analysis result indicate that carbon percentage is 68.72 %, hydrogen percentage is 2.15% and nitrogen percentage is <0.30%. LDPE waste plastic additives percentage is higher than LDPE standard plastic. Residue analysis result showed also Btu value more than 5000/lb and this residue could be use as substantial coal or road carpeting and road carpeting. Both residue was heated up to more than 800 °C and check there physical properties and found it did not burn it and make more hard like stone. During heating period we notice that some black smoke came out. Residue was combination of different category of metal which was used during plastic to fuel production finished.

## 4. Conclusion

LDPE waste plastic and LDPE standard plastic to fuel production process was applied with thermal degradation without catalyst in present of oxygen under laboratory fume hood. Both experiments were performed same parameter and same condition. In laboratory batch scale process LDPE waste plastic and LDPE standard plastic to fuel production temperature were uses in same feature. Collected fuel was analyzed by NSR laboratory and  $3^{rd}$  party analysis for fuel properties determination. In this analysis ASTM result indicate that LDPE waste plastic to fuel BTU value is 123631/gallon and on the other hand LDPE standard plastic to fuel BTU value is 128606/ gallon. LDPE standard plastic to fuel GC/MS analysis result indicate that hydrocarbon range is C<sub>3</sub>-C<sub>28</sub> on the other hand LDPE waste plastic to fuel GC/MS analysis result indicate that hydrocarbon range is C<sub>3</sub>-C<sub>44</sub>. By using this technology could be solve environmental problems as well as energy problems and the thermal process can able to convert all LDPE waste plastic into liquid hydrocarbon fuel for internal combustion engines. Produced fuel could be use as a feed stock refinery or feed for electricity generation power plant. By using the technologies could be reduce some foreign oil dependency and boost up energy sector for near future.

# Acknowledgement

The author acknowledges the support of Dr. Karin Kaufman, the founder and sole owner of Natural State Research, Inc (NSR). The authors also acknowledge the valuable contributions NSR laboratory team members during the preparation of this book.

# References

[1] I. Hakki Metecan, Ahmet R. Ozkan, Rahim Isler, Jale Yanik, Mehmet Saglam, Mithat Yuksel, Naphtha derived from polyolefins, Fuel, Volume 84, Issue 5, March 2005, Pages 619–628

[2] Karishma Gobin, George Manos, Polymer degradation to fuels over microporous catalysts as a novel tertiary plastic recycling method, Polymer Degradation and Stability, Volume 83, Issue 2, February 2004, Pages 267–279

[3] N. Miskolczi, L. Bartha, G. Deak, B. Jover, Thermal degradation of municipal plastic waste for production of fuel-like hydrocarbons, Polymer Degradation and Stability, Volume 86, Issue 2, November 2004, Pages 357–366

[4] Ayhan Demirbas, Pyrolysis of municipal plastic wastes for recovery of gasoline-range hydrocarbons, Journal of Analytical and Applied Pyrolysis, Volume 72, Issue 1, August 2004, Pages 97–102

[5] Achilias DS, Roupakias C, Magalokonomosa P, Lappas AA, Antonakou EV. Chemical recycling of plastic wastes made from polyethylene (LDPE and HDPE) and polypropylene (PP), Journal of Hazardous Materials (2007); 149:536-542

[6] Muthaa NH, Patel M, Premnath V. Plastics materials flow analysis for India. Resources, Conservation and Recycling (2006); 47:222-244

[7] Buekens AG, Huang H. Catalytic plastics cracking for recovery of gasoline range hydrocarbons from municipal plastic wastes. Resources Conservation and Recycling (1998); 23:163-181

[8] Misklczia N, Barthaa L, Deak G, Jover B. Thermal degradation of municipal plastic waste for the production of fuel like hydrocarbons. Polymer Degradation and Stability (2004); 86:357-366

[9] Asanuma M, Ariyama T. Recycling of waste plastics in blast furnace. J Jpn Inst Energy (2004); 83(4):252 256

[10] Kato K, Fakuda k, Tachibana H. Waste plastics recycling technology using coke ovens. J Jpn Inst Energy (2004); 83(4):248-251.

[11] Steiner C, Kameda O, Oshita T, Sato T. EBARA's fluidized bed gasification: atmospheric 2x225 t/d for shredding residue recycling and two stage pressurized 30 t/d for ammonia synthesis from waste plastics. In: proceedings of 2nd international symposium on feedstock recycle of plastic and other innovative plastics recycling techniques. Ostend, Belgium; 8-11 September, (2002)

[12] Yoshioka T, Gause G, Eger C, Kamisky W, et all. A Pyrolysis of PETE in fluidized bed plant. Polym Degrad Stabil (2004); 86:499-504

[13] Kaminsky W, Schlesselmann B, Simon CM. Thermal degradation of mixed plastic waste to aromatic and gas. Polym Degrad Stabil (1996); 53:189-197

[14] Nigo A, Bhaskar T, Muto A, Sakata Y. Effect of natural and synthetic zeolites for the gasification of polyethylene and polypropylene, In; Proceeding of 3rd international symposium on feedstock recycle of plastics & other innovative plastics recycling techniques. Karlsruhe, Germany; 25-29 September, (2005), p. 395-401

[15] Kim YM, Kim S, Park YK, Kim JM, et all. Catalytic cracking of HDPE over MCM-48. In; proceeding of 3rd international symposium on feedstock recycle of plastics & other innovative plastics recycling techniques. Karlsruhe, Germany; 25-29 September, (2005), p. 333-339

[16] Aguado J, Serrano DP, Miguel GS, Escola JM, et all. Catalytic activity of zeolitic and mesostructured catalysts in the cracking of pure and waste polyolefins, J Anal Appl Pyrol (2007); 78:153-161

[17] Botas JA, Bravo M, Escola JM, Garcia P. Catalytic upgrading of higher 1-alkanes from polyethylene thermal cracking by modified wacker oxidation. J Mater Cycle Waste Manage (2006); 8:122-125

[18] Todd M. Kruse, Seth E. Levine, Hsi-Wu Wong, Eric Duoss, Andrew H. Lebovitz, John M. Torkelson, Linda J. Broadbelt, Binary mixture pyrolysis of polypropylene and polystyrene: A modeling and experimental study, Journal of Analytical and Applied Pyrolysis, Volume 73, Issue 2, June 2005, Pages 342–354

[19] C.G. Jung, A. Fontana in: J. Scheirs W. Kaminsky (Eds.) Feedstock Recycling and Pyrolysis of waste plastics, Wiley (2006), p. 252 (Chapter 10)

[20] Paul T. Williams\* and Elizabeth A. Williams, Interaction of Plastics in Mixed-Plastics Pyrolysis, Energy & Fuels, 1999, 13 (1), pp 188–196, DOI: 10.1021/ef980163x

[21] Jong-Ryeol Kim, Jik-Hyun Yoon, Dae-Won Park, Catalytic recycling of the mixture of polypropylene and polystyrene, Polymer Degradation and Stability, Volume 76, Issue 1, 2002, Pages 61–67

[22] Kyong-Hwan Lee, Dae-Hyun Shin, Characteristics of liquid product from the pyrolysis of waste plastic mixture at low and high temperatures: Influence of lapse time of reaction, Waste Management, Volume 27, Issue 2, 2007, Pages 168–176

[23] Kyong-Hwan Lee, Dae-Hyun Shin, Young-Hwa Seo, Liquid-phase catalytic degradation of mixtures of waste high-density polyethylene and polystyrene over spent FCC catalyst. Effect of mixing proportions of reactants, Polymer Degradation and Stability, Volume 84, Issue 1, April 2004, Pages 123–127